Relationship of Process Capability and R\&R

For this particular section, the following relationships apply:
$\sigma_{0} \quad$ The sigma of the observed process as determined from a capability study. This sigma should preferably come from the $\frac{\bar{R}}{d_{2}}$ of a control chart, it is sigma of the process based on at least 100 observations. This sigma includes the variation of the actual process and measurement.
σ_{a} The sigma of the actual process without the measurement variation. It is not directly measurable.
$\sigma_{\text {R\&R }}$ The sigma from an R\&R study. This sigma indicates the variation due to measurement.

$$
\begin{gathered}
\sigma_{o}^{2}=\sigma_{a}^{2}+\sigma_{R \& R}^{2}, \text { and } \\
C_{p}=\frac{\text { tolerance }}{6 \sigma_{\circ}}=\text { observed } C_{p} \text {, then } \\
\sigma_{\circ}=\frac{\text { tolerance }}{6 C_{p}}
\end{gathered}
$$

Let $\% R \& R=X \%$, but

$$
\begin{gathered}
\circ R \& R=\left(\frac{5.15 \sigma_{R \& R}}{\text { tolerance }}\right) * 100=X \circ, \text { then } \\
X=\frac{5.15 \sigma_{R \& R}}{\text { tolerance }} \text {, thus } \\
\sigma_{R \& R}=\frac{X(\text { tolerance })}{5.15}
\end{gathered}
$$

Using $\sigma_{0}{ }^{2}=\sigma_{a}{ }^{2}+\sigma_{R \& R}{ }^{2}$ and the formula for σ_{0} and $\sigma_{R \& R}$,

$$
\begin{gathered}
\sigma_{a}=\sqrt{\sigma_{o}{ }^{2}-\sigma_{R \& R}^{2}} \\
\sigma_{a}=\sqrt{\left(\frac{\text { tolerance }}{6 C_{p}}\right)^{2}-\left(\frac{(X) \text { (tolerance) }}{5.15}\right)^{2}} \\
\sigma_{a}=\text { tolerance } \sqrt{\left(\frac{1}{6 C_{p}}\right)^{2}-\left(\frac{X}{5.15}\right)^{2}}, \text { then } \\
C_{p A}=\text { Actual } C_{p}=\frac{\text { tolerance }}{6 \sigma_{a}}, \text { and }
\end{gathered}
$$

$$
\begin{gathered}
C_{p A}=\frac{\text { tolerance }}{6\left\{\text { tolerance } \sqrt{\left(\frac{1}{6 C_{p}}\right)^{2}-\left(\frac{X}{5.15}\right)^{2}}\right\}},= \\
C_{p A}=\frac{1}{6 \sqrt{\left(\frac{1}{6 C_{p}}\right)^{2}-\left(\frac{X}{5.15}\right)^{2}}}
\end{gathered}
$$

$C_{p A}$, the actual C_{p}, can be calculated for each combination of the observed C_{p} and X (the proportion of R\&R to the tolerance). Note that some combinations of X and observed C_{p} are impossible.

These results are shown in table 10.
Table of Actual C_{p} for Combination of Observed C_{p} and $\%$ R\&R

		0\%	10\%	20\%	30\%	40\%	50\%	60\%	70\%
Observed C_{p}	0.50	0.50	0.50	0.50	0.51	0.51	0.52	0.53	0.55
	0.60	0.60	0.60	0.61	0.61	0.62	0.64	0.66	0.69
	0.70	0.70	0.70	0.71	0.72	0.74	0.77	0.80	0.85
	0.80	0.80	0.80	0.81	0.83	0.86	0.90	0.96	1.06
	0.90	0.90	0.90	0.92	0.95	0.99	1.06	1.16	1.33
	1.00	1.00	1.01	1.03	1.07	1.13	1.23	1.40	1.73
	1.10	1.10	1.11	1.14	1.19	1.28	1.43	1.72	2.49
	1.20	1.20	1.21	1.25	1.32	1.45	1.68	2.20	5.83
	1.30	1.30	1.32	1.36	1.46	1.63	1.99	3.11	
	1.40	1.40	1.42	1.48	1.61	1.85	2.42	6.81	
	1.50	1.50	1.52	1.60	1.76	2.10	3.08		
	1.60	1.60	1.63	1.72	1.93	2.40	4.41		
	1.70	1.70	1.73	1.85	2.11	2.79			
	1.80	1.80	1.84	1.98	2.32	3.31			
	1.90	1.90	1.95	2.12	2.54	4.09			
	2.00	2.00	2.06	2.26	2.80	5.52			

Table 1

