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Repeatability & Reproducibility Studies
Introduction

Before we can talk about “gage R&R,” we have to define the word “gage.” When asked to
name a gage, people typically think of micrometers, pressure gages, temperature gages, etc.
However, the term “gage” actually refers to any device used for making measurements. In this
document, the terms “gage” and “device” are used interchangeably and refer to any device or
equipment for making a measurement.

Just what is a “gage R&R study, anyway?” Gage R&R is a study of the measurement variation
of a gage and the variation of measurements of operators. To understand why this is
important, recall that the goal is to constantly improve process control, reducing the variability
in the process and product. In order to address actual process variability, the variation due to
measurement system must be identified and separated from that process. Studies of
measurement variation are a waste of time and money unless they lead to action to reduce
process variation and improve process control. Since you cannot address something that
cannot be measured precisely, you must start with an assessment of the gage R&R.

Every observation contains both actual process variation and measurement variation (Figure
1). In the case of measurement systems, the sources are:

a) Gage,
b) Operator
c) Variation within the sample.

Figure 1
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Gage variability can be broken down into additional components, such as:

a) Calibration (is the gage accurate?)
b) Stability (does the gage change over time?)
c) Repeatability (variation of the gage when used by one operator in a brief interval), and
d) Linearity (is the gage more accurate when used at low values than at high values?)

Variation within a sample is included in process variation; yet, it is also often mixed with
measurement variation.

Gage Repeatability and Reproducibility (R&R) studies are defined as studies of
reproducibility (operator variation) and repeatability. Repeatability is the variation observed
when an operator measures the same sample with the same gage several times.
Reproducibility is the additional variation observed when different operators use the same
gage to measure the same sample. The combination of both sources of variation is referred
to as R&R (see Figure 2). The exclusion of other potential sources of measurement variation
does not imply that calibration, stability or linearity are unimportant; it is just the impact of that
those sources are ordinarily less significant. For that reason, R&R is usually studied and
quantified first. Repeatability and reproducibility are actually key output variables (KOV’s) of
the measurement system. In order to improve them, the key input variables (KIV’s) must be
addressed via procedures, standards, training and appropriate studies.

Figure 2

R&R studies are planned and executed in a fashion to avoid confusion with other sources of
variation. The other sources of variation cannot be ignored. In particular, actual process
variation is the ultimate subject to be addressed. Customers may require both R&R studies
and process capability. All significant sources of variation must be addressed in order to
bring processes and products under better control. Process capability studies include both
process variation and measurement variation. Consequently, R&R studies should be
accompanied or quickly followed by evaluations of calibration, variation within sample and,
any other relevant source of variability.

Variation within a sample being measured is difficult to exclude from an R&R study. This
source is extremely important and should always be pursued with diligence. It not only has
relevance to understanding R&R’s, but it also provides vital information on how to gain
process capability improvement. A specific example of variation within a sample is apparent
when measuring surface texture with a profilometer. The test piece itself is sufficiently
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variable that if the measurement is made at a random position, the variation within the
sample will inflate the estimate of repeatability. It is necessary to identify and measure this
variability within the sample; this is not the role of an R&R study alone. This will discussed
later in more depth. The key point is to make certain that process variability within the sample
does not intrude on an R&R study if it can be avoided. Determination of an unsatisfactory R&R
should always lead to an evaluation of whether variation within the sample is part of the
problem.

In the ideal case, all variability in measurements will be due to the part-to-part variation, and
only a negligible proportion of the variability will be due to operator reproducibility and trial-
to-trial repeatability. You can compute the standard indices of repeatability, reproducibility,
and part-to-part variation, based either on ranges (as is most common) or from an analysis of
variance (ANOVA). The ANOVA table will also contain an F-test (statistical significance test)
for the operator-by-part interaction, and report the estimated variances, standard deviations,
and confidence intervals for the components of the ANOVA model. Finally, you can compute
the respective percentages of total variation, and report so-called percent-of-tolerance
statistics.

Procedure for Performing and R&R Study

The person conducting the study has several responsibilities to ensure a successful R&R.
The first is to obtain proper samples.  They should all be of a similar product line. Select
actual parts from production. The selected parts should cover the entire tolerance range.
Each part should be labeled with a unique identifier to facilitate data collection. The samples
should be masked so that the persons involved in the test do not know which sample labels
are which.  Typically, when an R&R is done, the labels on the samples are changed after
each reading or day.  If the person conducting the test does not maintain 100% control and
traceability of the samples throughout the test, it is invalidated.  All persons participating in
the test should know that the labels are being changed.

Review the gage instruction method and verify it is the correct one. Prepare the appraisers for
data collection. Review the inspection method with the appraisers. Explain the purpose of the
study, the method of data collection and, the role of the appraisers.

Measure each part in random order and record the readings on a data sheet. Appraisers
should take the normal amount of time to take each measurement. Measure each part in a
random order and record the readings on another data sheet. It is important to keep the
readings separate so appraisers are not biased by the previous readings.

Repeat taking measurements on each part, one at a time, until the desired number of
readings per part are obtained.
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Terms Used in R&R

n = Number of Parts [2 to 10]
a = Number of Appraisers
r = Number of Trials
g = r * a

  R A = Average for appraiser A, etc.
  R  = Average of   R A ,   R B , etc.
Rp = Range of Average Parts

  X diff = Difference Between High & Low Appraiser Averages
σev = Equipment Variation (Repeatability)
σov = Operator Variation (Reproducibility)
σs = Sample Variation
σp = Part Variation

Data Analysis

An example of data from an R&R study is presented below. Suppose an R&R study is
conducted with two persons measuring parts. The specification is 1.000 ± 0.010. Readings
are recorded to the nearest 0.001 inch. The measurements obtained are presented in Table
1.

Appraiser 1 Part 1 2 3 4 5 6 7 8 9 10
Trial

1 1.004 1.005 1.002 1.002 1.004 1.003 1.007 1.000 0.999 0.998
2 1.004 1.005 1.001 1.000 1.004 1.003 1.007 1.000 0.999 0.998
3 1.005 1.005 1.003 1.002 1.004 1.002 1.007 1.001 0.999 0.998

Range 0.001 0.000 0.002 0.002 0.000 0.001 0.000 0.001 0.000 0.000

Appraiser 2
Trial

1 1.004 1.005 1.001 1.001 1.004 1.002 1.006 1.000 1.000 0.998
2 1.004 1.006 1.002 1.002 1.004 1.002 1.004 1.000 0.999 0.997
3 1.003 1.005 1.001 1.002 1.004 1.002 1.005 1.000 0.999 0.997

Range 0.001 0.001 0.001 0.001 0.000 0.000 0.002 0.000 0.001 0.001

RbarA 0.0007
RbarB 0.0008

Table 1 1

The average ranges for each appraiser are calculated and the upper control limit (UCLR) for
the range is calculated     UCLR = R * D4

                                                

1 Total Quality Management Handbook, Jack Hradesky, McGraw Hill, 1995
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Where the number of trials (r) determines D4 from table 2.

r D 4

2 3.267
3 2.574
4 2.282
5 2.114
6 2.004

Table 2

For the example above,   UCRL 2.574* 0.00075 0.0019

If any ranges exceed the UCLR, do the following:

Remeasure the part to determine if the out-of-control range was due to recording or
measurement error.

If data recording error is suspected, remove the affected measurement from the computations
and recalculate the average range and UCLR. When more than one data recording error is
found, correct the measurement process and repeat the study.

If there is more than one range exceeding the UCLR due to a measurement error, the method
must be revised. No further computations are needed, and the study should be repeated
when the method is improved.

When only one range exceeds the UCLR due to measurement error, remove the affected
data from the computations and recompute the average range and UCLR.

In the example, three of the ranges (0.002) exceed the UCLR of 0.0019. Due to the
measuring equipment increment being 0.001, these are not considered measurement or data
recording errors and are not removed.

Repeatability Evaluation

Repeatability is found by computing the Standard Deviation of Repeatability (σev). The σev is

found by 
    

ev

1
d2

* R  where d2 (found from table 3) with r equal to the number of trials.

r d2

2 1.128
3 1.693
4 2.059
5 2.326

Table 3

In the example, 
    

1
d2

= 0.591 and     ev = 0.591 * 0.00075 = 0.00044
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The Percent Tolerance Consumed by Repeatability (PTCR) is found by multiplying by 5.15
(based on an interval that contains 99% of the distribution) and dividing by the tolerance
spread:

    
PTCR =

5.15 * ev

TotalTolerance

 
 
  

 
 * 100

    
PTCR =

5.15 * 0.00044
0.020

 
 
  

 
* 100 = 11.33%

Reproducibility Evaluation

The reproducibility is found by computing the Standard Deviation of Reproducibility (σov). The
σov is found by   ov = (X L − X S)* D

Where D is a factor taken from table 4 and a equal the number of appraisers.

a D
2 0.709
3 0.524
4 0.446
5 0.403
6 0.375
7 0.353
8 0.338
9 0.325
10 0.314

Table 4

Using the example data     ov = (1.0024 − 1.0020)* 0.709 = 0.00028

The Percent Tolerance Consumed by Measurements (PTCM) is found by multiplying by 5.15
(based on an interval that contains 99% of the distribution) and dividing by the tolerance:

    
PTCM =

5.15 * ov

TotalTolerance

 
 
  

 
 * 100

    
PTCM =

5.15 * 0.00028
0.020

 
 
  

 
* 100 = 7.3%
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Inspection Capability Evaluation

The Percent Tolerance Consumed by inspection Capability (PTCC) is calculated by:

    C = ev

2
+ ov

2

    C = 0.000442 + 0.000282 = 0.00052

    
PTCC =

5.15 * c

Total Tolerance
* 100

    
PTCC =

5.15 * 0.00052
0.020

* 100 = 13.39%

Data Evaluation

Results of the study are evaluated to determine if the measurement method is acceptable,
marginal or unacceptable using the following criteria:

PTCC Study Result
< 10% Acceptable

10% and 25% Marginal
> 25% Unacceptable

Table 5

If the measurement method is marginal or unacceptable, corrective action is required. The
study should be repeated when the corrective action is implemented and completed. In the
example, the inspection capability is marginal, since the PTCC is between 10% and 25%.

The Range Method

The range method is a modified variable gage study which provides a quick     approximation     of
measurement variability. This method will     only     provide the overall picture of the
measurement system. It     does          not    decompose the variability into repeatability and
reproducibility.

The range method uses two operators and five parts for the study. In this study, both
operators measure each part once. The range for each part is the absolute value of the
difference between the measurements obtained by operator A by operator B. The sum of the
ranges is found and the average range (  R ) is calculated. The total measurement variability is
found by multiplying   R  by 4.33. It is interesting to know the percentage of the process
variation (or tolerance) that measurement variation consumes. To convert the R&R into a
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percentage, multiply by 100 and divide by the process variation (or tolerance). In the example
below, the tolerance for this characteristic is ± 0.20.

Parts Operator A Operator B Range (A–B)
1 0.85 0.80 0.05
2 0.75 0.70 0.05
3 1.00 0.95 0.05
4 0.45 0.55 0.10
5 0.50 0.60 0.10

Table 6

    
R =

Ri∑
5

=
0.35
5

= 0.07

    R & R = R * 4.33 = (0.07)(4.33) = 0.303

  Process Variation = 0.40 or Tolerance

    
%R & R = 100*

R & R
Process Variation

= 100 *
0.303
0.400

= 75.5%

Now that the %R&R for the measurement system is determined, an interpretation of the
results should be made. Using the guidelines above, this measurement system is in need of
improvement.

Average and Range Method

The average and range method is a mathematical method which determines both
repeatability and reproducibility for a measurement system. Unlike the range method, this
allows the measurement system to be decomposed into separate components, repeatability
and reproducibility. Using the example data first presented above, a presentation of the
Average and Range method worksheet is presented in figure 3 below.
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1 2 3 4 5 6 7 8 9 10 11 12
Appraiser 1 Appraiser 2 Appraiser 3

Part 1st Test 2nd Test 3rd Test Range 1st Test 2nd Test 3rd Test Range 1st Test 2nd Test 3rd Test Range
1 1.004 1.005 1.005 0.001 1.004 1.004 1.003 0.001
2 1.005 1.005 1.005 0.000 1.005 1.006 1.005 0.001
3 1.002 1.001 1.003 0.002 1.001 1.002 1.001 0.001
4 1.002 1.000 1.002 0.002 1.001 1.002 1.002 0.001
5 1.004 1.004 1.004 0.000 1.004 1.004 1.004 0.000
6 1.003 1.003 1.002 0.001 1.002 1.002 1.002 0.000
7 1.007 1.007 1.007 0.000 1.006 1.004 1.005 0.002
8 1.000 1.000 1.001 0.001 1.000 1.000 1.000 0.000
9 0.999 0.999 0.999 0.000 1.000 0.999 0.999 0.001
10 0.998 0.998 0.998 0.000 0.998 0.997 0.997 0.001

Totals 10.024 10.022 10.026 10.021 10.020 10.018
20.046 0.0007 20.041 0.0008
10.026 R–Bar 1 30.059 R–Bar 2 R–Bar 3

Sum 30.072 Sum 30.059 Sum
X–Bar 1 1.0024 X–Bar 2 1.0020 X–Bar 3

R–Bar 1 0.00070 # Trials D 4 R Bar All x D 4 = UCL r Max X–Bar 1.0024
R–Bar 2 0.00080 Min X–Bar 1.0020
R–Bar 3 2 3.27 0.00075  x 2.58 = 0.00194 X–Bar Diff 0.0004

Sum 0.00150 3 2.58
R–Bar All 0.00075

Measurement Unit Analysis Percent Tolerance Analysis

Tolerance = 0.010

Repeatability - Equipment Variation (EV) %EV = 100(EV/Tolerance)

EV = Rdbar x K1 Trials 2 3 4 %EV = 11.44%
K1 4.56 3.05 2.50

EV = 0.00229 K1 = 3.05

σEV = EV/5.15 = 0.00044

Reproducibility - Operator Variation (OV) %OV = 100(OV/Tolerance)

OV = SQRT((X-Bar Diff x K2)^2 - [(EV)^2/(n*r)]) Operators 2 3 4 %OV = 7.63%
K2 3.65 2.70 2.30

OV = 0.00153 K2 = 3.65
n = 10
r = 3

σOV = OV/5.15 = 0.00030

Repeatability and Reproducibility (R&R) %R&R = 100(R&R/Tolerance)

R&R = SQRT(EV^2 + OV^2) %R&R = 13.75%

R&R = 0.00275 σR&R = R&R/5.15 = 0.00053

Figure 3
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There are minor differences in the results using the Average and Range method. They are
due to various errors introduced in the derivations of the different factors involved. When
there is an R&R  study that yields unsatisfactory results, advanced methods can be employed
to determine exactly which area to improve upon. Tests such as Analysis of Variance
(ANOVA), t-tests and others will help to isolate the problem. The ANOVA test is particularly
useful when a single factor does not indicate where improvement is needed, but can be used
to determine if there are interactions between factors.

Derivation of the K1 Factor

To understand the methodology for determining the proper K1 factors, we first need to
understand what is going on. On the R&R worksheet presented in figure 3, the range of the
trials for each operator–sample is calculated. These are averaged to get the average range
for each operator (  R A ,  R B , etc.). The grand average, (  R ), is the average for all operations.

These ranges of measurements on the same sample by the same operator are used to
ascertain the standard deviation of repeatability (σev). From quality control statistics, recall that
ranges and standard deviations are related by the formula:

    
ev =

R 
d2

Where d2 varies with the sample size (number of trials) used to calculate a single range.
Repeatability (ev) as defined above as 99% of the spread of 5.15 σev.

    
Re peatability = 5.15 ev = 5.15

R 
d2

 

 
  

 
 = K 1* R  where K1 =

5.15
d2

For example, for a study with three trials, the sample size for each range is three. The tabular
value for d2 for a sample size of three is d2 = 1.69.

    
Re peatability = 5.15 ev = 5.15

R 
d2

 

 
  

 
 = 5.15

R 
1.69

 

 
  

 
 = 3.05 * R 

This is the source of the K1 factors presented in figure 3 for a given number of trials.

It has been shown that his estimation procedure must be corrected when there are a small
number of ranges. Since there is a range calculated for each operator–sample combination,
the product of (# operators) x (# samples)  is the number of ranges. If there are more
than 15 such ranges, the usual estimation procedure using d2 is appropriate. In such a case,
the values of K1 from the form in figure 3 are correct.
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If (# operators) x (# samples)  is less than 16, then the estimation procedure should
be adjusted. This is done by using a parameter d2* rather than d2 and:

    
K1 =

5.15
d2 *

The values of K1 using the factor d2* are presented in table 7. The particular value depends
on the number of ranges calculated (# operators) x (# samples) and the number of
trials. For example, if three operators are used with four samples for three trials, then (#
operators) x (# samples) =12. Since the three trials provide a subgroup size of three,
the referenced table for (# operators) x (# samples) =12 and r = 3 provides K1 of 3.01.

K1 Factors When (# operators) x (# samples)  is  15

(# operators) x (# samples)

3 4 5 6 7 8 9 10 11 12 13 14 15 ≥ 16

2 4.19 4.26 4.33 4.36 4.40 4.40 4.44 4.44 4.44 4.48 4.48 4.48 4.48 4.56

# of 3 2.91 2.94 2.96 2.98 2.98 2.99 2.99 2.99 3.01 3.01 3.01 3.01 3.01 3.05

Trials 4 2.43 2.44 2.45 2.46 2.46 2.48 2.48 2.48 2.48 2.49 2.49 2.49 2.49 2.50

5 2.16 2.17 2.18 2.19 2.19 2.19 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.21

6 2.00 2.00 2.01 2.01 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.03 2.03 2.04

Notes:
1. If possible, select the number of operators and samples for (# operators) x (# samples) to exceed 15.
2. If (# operators) x (# samples) is ≤ 15, enough trials should be run to avoid the shaded area of the table.
     (Otherwise, be aware the estimates may be imprecise)

Table 7

Table of d2* For Computing K2

g

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 1.41 1.28 1.23 1.21 1.19 1.18 1.17 1.17 1.16 1.16 1.16 1.15 1.15 1.15 1.15

m 3 1.91 1.81 1.77 1.75 1.74 1.73 1.73 1.72 1.72 1.72 1.71 1.71 1.71 1.71 1.71

4 2.24 2.15 2.12 2.11 2.10 2.09 2.09 2.08 2.08 2.08 2.08 2.07 2.07 2.07 2.07

5 2.48 2.40 2.38 2.37 2.36 2.35 2.35 2.35 2.34 2.34 2.34 2.34 2.34 2.34 2.34

6 2.67 2.60 2.58 2.57 2.56 2.56 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.54 2.54

Table 82

The table of adjusted K1 factors contains a recommendation for the minimum number of trials
in an R&R study. A study is not limited to that minimum. However, the recommended number
of trials for a given number of ranges (# operators) x (# samples) assures that the

                                                

2 Quality Control and Industrial Statistics, A. J. Duncan, Richard D. Irwin, Inc., 4th Ed., 1974
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estimates of σev are all based on at least 14 degrees of freedom, the minimum number for the
case where (# operators) x (# samples) is greater than 15 and there are two trials.

When the combinations of number of operators, trials and samples fall into the shaded area
of the table, the level of confidence in the resulting estimates becomes poor. These
conditions should be avoided when possible.

This procedure is also valid when there is a single operator (if there is no operator, assume a
single operator). In that case, the rules concerning (# operators) x (# samples)

become simply (# samples) greater than 15. If the number of samples is 15 or less, then
the number of trials must be increased accordingly.

Previous discussions indicated that the parts used in the study should cover the range of
measurements expected. However, there is also a requirement that the range of
measurements used in the study be defined such that the average range on each part is
expected to estimate a common σev. If this “homogeneity” is not met, the results become
erratic.

Derivation of the K2 Factor

The same rationale that was applied to obtain the K1 factors is also applied to obtain the K2

factors on the form. The K2 factor is used to ascertain the standard deviation of the operator’s
averages, leading to the estimation of reproducibility. The ranges of the operator’s averages
is labeled   X diff. Again:

    
ov =

R
d2

=
X diff
d2

Such a small number of ranges (one!) forces the use of d2* instead of d2. Then:

    
ov =

X diff

d2
*

Table 8 is used to find the proper value for d2* for g = 1 and m = # of operators.
Reproducibility is defined as a 5.15σ range. Then, if the same basis is used for the σ of
operator’s averages, then:

    
5.15 ov =

5.15X diff
d2

* = K 2 * X diff where K 2 =
5.15

d2
*

For example, for four operators, table 8 provides g=1 and m = 4 a value of 2.24. Then:

    
K2 =

5.15

d2
*

=
5.15
2.24

= 2.30

The other values of K2 are estimated similarly.
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This procedure provides degrees of freedom = (# operators - 1). Thus, if there are two
operators, there is only one degree of freedom for the estimate. This is why it is
recommended to use three or four operators, if practical.

Note if there is a single operator, it is not possible to calculate the K2 factor.

Derivation of the Calculation of Reproducibility

The derivation of the calculation of reproducibility was covered earlier with the origins of the
K2 factor used. The origin of the formula of reproducibility (ov) is presented here. Since
reproducibility may also be referred to as operator variation, the notation “ov” is used.

The entire procedure of an R&R study is based on Analysis of Variance (ANOVA). It helps for
this section if a knowledge of ANOVA is known. If not, it is recommended that the concept be
studied further for a better understanding.

AN R&R study is a designed experiment where the factors are: 1) samples; 2) operators. The
trials are nested within operators and samples. It is assumed that:

1. The samples are random representatives from a large population of possible samples.

2. The operators are random samples of a population of possible operators. (This
assumption is debatable if there are only a few operators. This along with the low
degrees of freedom, is why reproducibility is estimated with much less confidence than
repeatability).

3. The interaction of operators and samples does not exist. The calculation of the Upper
Control Limit of the ranges for the R&R is a weak attempt to confirm this assumption.
Interaction could also be a result from too broad a range for the sample.

4. The study has been performed in such a manner, using random order of tests, that the
pooled variation of the trials for each operator–sample combination is an estimate of the
error mean square in the ANOVA.

ANOVA Table

Source Expected
Mean Square

Samples σev
2 + (o*r)σs

2

Operators σev
2 + (r*n)σav

2

Error σev
2

Where n = # samples; o = # operators; r = # trials
Table 9
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There should be no interest in the variability due to samples; in fact, samples should be
selected to cover the range of possible materials (covered earlier).

    
ev

2
=

R 
d2

 

 
  

 
 
2

The variance in operator’s averages, however, is given by

    

X diff

d2
*

 

 
 

 

 
 

2

Since each operator’s average is the average of (r x n) measurements, then using
ANOVA tables expected mean square.

    

2
OperatorsAverages =

X diff

d2
*

 

 
 

 

 
 

2

= ev
2 + (r * n* ov

2
)

r * n

Although this all looks formidable, it is a restatement of the rule: if the variance of one
observation is σ2, the variance of an average of m observations is σ2/m. Thus:

    

2
OperatorsAverages = ov

2
+ ev

2

r * n
=

X diff

d2
*

 

 
 

 

 
 

2

and

    
ov

2
=

X diff

d2
*

 

 
 

 

 
 

2

− ev
2

r * n
=

X diff

d2
*

 

 
 

 

 
 

2

−

R 

d2
*

 

 
 

 

 
 

2

r * n

This is what is happening in the calculations of the R&R form. The only difference is that the
form is working with 5.15 x sigma, thus using K1 and K2. That results in:

    ev = 5.15 ev = K 1R

    

ov 2 = 5.152
ov

2
= 5.152 X diff

d2
*

 

 
 

 

 
 

2

− ev
2

r * n

    ev
2 = 5.152

ev

2

    
ov 2 = K 2 * X diff( )2 −

ev 2

r * n

Then:

    
ov = K 2X diff( )2 −

ev 2

r * n
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For a discussion of the respective roles and advantages of ANOVA versus   X –R charts, refer
to pages 683–684 of Duncan’s3 text.

How to Address Variation within A Sample

There are some measurements where variation within the sample cannot be prevented from
having an effect on the R&R study. For example, the measurement of “out-of-roundness” of a
bar. There is variability in this measurement depending upon where on the sample bar the
measurement is made. Another example is the surface roughness of a sample that may vary
significantly across the sample. Still another is a destructive measurement where the same
test cannot be reused.

The variation within the sample is extremely important and can be a major component of
process capability. Neither the measurement variation nor the process variation can be
understood without defining the variation within the sample. The issue is the order of attack.

In order of priorities:

1. There must be a calibration procedure in place.

2. The measurement capability (R&R) must be defined, excluding variation within the
sample.

3. The variation within the sample must be defined.

4. Move on to process control.

There are two situations that must be considered:

Case A: Either what to expect is not known or it is logical to assume no
significant variation within the sample.

In such instances, perform an R&R in the routine fashion, making no effort to avoid the effect
of variation within the sample. This would mean that the operator is not instructed to test or
retest at the same location.

1. If the R&R calculations for repeatability are satisfactory, any variation within the sample is
either insignificant or not a pressing concern.

2. If the result of the calculations of repeatability is poor or marginal, the existence of
significant variation within the sample must be addressed and defined. The R&R study will
have provided an estimate of σev. If there is significant variation within the sample, this
estimate is actually the estimate of:

    ev = e

2
+ pv

2

                                                

3 Quality Control and Industrial Statistics, A. J. Duncan, Richard D. Irwin, Inc., 4th Ed., 1974
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Where σe estimates the actual sigma of repeatability and σpv estimates the sigma of
variation within the sample. There is a need to separate and estimate each component. It
cannot be done as the study was performed. A second study must be performed to
estimate σe  allowing an estimation of σpv.

How is an estimate of σe done without the effect of σpv? Repeating an R&R study either with
special samples known to contain small within sample variation or specify exactly where on
the sample the repeated measures are to be made does this. Examples would be using
standard test blocks in testing a hardness tester or specifying the exact point on a bar to test
for out-of-roundness. This time σe = σev of the second study

Using this value, the prior equation can be used to solve for σpv. Assume in an R&R study of a
profilometer, σev = 2.33, an undesirable result. The design permitted the variation within the

sample to be mixed with that of repeatability. Then     ev = 2.33 = e

2
+ pv

2

Assume the study is rerun, this time the point of measurement is controlled. The new estimate
is σe = 1.21 = σev of the second study. Now:

     2.33 = e

2
+ pv

2
= 1.212 + pv

2

σpv
2 = 3.97

σp = 1.99

An estimate of σev has now been found and does not include σpv. An estimate of σpv has also
been obtained. We could continue to measure the R&R results based on the clean estimate
of σev. This indicates the ability to measure. Note the actual, routine measurements will be
more variable than indicated by the R&R if (the variation within the sample) is a significant
contributor to the variation. If measurements are made at a randomly selected location on the
samples, that measurement variation contains the effect of both within sample variation and
repeatability of the measurement device.

Figure 4

If the measurements are now made at the same location on each sample, then the
measurement variation does not contain the effect of variation within the sample. In that case,
the σev = σev  and σpv is not measured at all. Note in this example, the estimation of
repeatability is seriously influenced by whether variation within the sample is present.
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Results of variation within the sample are important, providing vital information on the
process control characteristics to be addressed. What is to be done about these results? The
fact that a clean estimate of R&R is now available does not mean the variation within the
sample can be ignored. That information must be brought forward to stimulate process
improvement.  There are ways to indicate the significance of variation within the sample.

1. Calculate percent variation within sample
    

5.15 pv

tolerance

2. Calculate percent R&R and variation within the sample
    

5.15 e
2 + pv

2 + ov
2

tolerance

This allows the relative importance of the variation within the sample to be described and
compared with PTCR, PTCM and PTCC.

Case B: It is known that significant variation exists within the sample.

The only difference between this situation and the previous case is the order of the
successive R&R studies.

1. If it is already known there is significant variation within the sample, first perform the R&R
study using whatever procedure will eliminate or avoid variation within the sample. This
could mean using standards, special samples and/or carefully identifying and controlling
the point of measurement. The resulting R&R study will estimate σev, an estimate that is
free of within sample variation. This study will provide the official R&R results.

2. Next, rerun an R&R on production samples or in a fashion that will produce the combined
estimate of:

     ev = e

2
+ pv

2

Use the two sets of results to solve as before for σpv. This second study will provide the
estimate for variation within the sample.

These final comments are offered:

1. R&R studies are limited, by definition, to the effects of operators and measurement device.

2. Indications or expectations of variation within the sample must be followed up with an
appropriate study. Otherwise, knowledge of the process is incomplete and may mislead
efforts to achieve improvement. To understand the measurement system, this component
of variation must be measured and studied.

3. This discussion has touched briefly on the mechanics, striving to convey the logic and
philosophy for dealing with variation within a sample. In confusing or difficult cases, more
advanced statistical techniques may be required.
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4. An R&R study should not be run once and forgotten. Such studies should be performed
on a regular basis and records kept to monitor performance over time.

Relationship of Process Capability and R&R

For this section, the following relationships apply:

σo The sigma of the observed process as determined from a capability study. This sigma

should preferably come from the 
    

R 
d2

 of a control chart, it is sigma of the process based

on at least 100 observations. This sigma includes the variation of the actual process and
measurement.

σa The sigma of the actual process without the measurement variation. It is not directly
measurable.

σR&R The sigma from an R&R study. This sigma indicates the variation due to measurement.

    o
2

= a

2
+ R&R

2
, and

    
C p =

tolerance
6 o

= observed C p , then

    
o =

tolerance
6C p

Let %R&R = X%,

    
%R & R =

5.15 R&R

tolerance

 
 
  

 
 * 100 = X% , then

    
X =

5.15 R&R

tolerance
, thus

    
R&R =

X tolerance( )
5.15

Using     o
2

= a

2
+ R&R

2
 and the formula for σo and σR&R,

    a = o

2
− R&R

2

    
a =

tolerance
6 C p

 

 
  

 
 
2

−
(X) (tolerance)

5.15

 
 
  

 

2

    
a = tolerance

1
6 C p

 

 
  

 
 
2

−
X

5.15

 
 
  

 

2

, then
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C pA = Actual C p =

tolerance
6 a

, and

    

C pA =
tolerance

6 tolerance
1

6 C p

 

 
  

 
 
2

−
X

5.15

 
 
  

 

2 
 
 

  

 
 
 

  

, =

    

C pA =
1

6 
1

6 C p

 

 
  

 
 
2

−
X

5.15

 
 
  

 

2

CpA, the actual Cp, can be calculated for each combination of the observed Cp and X (the
proportion of R&R to the tolerance). Note that some combinations of X and observed Cp are
impossible.

These results are shown in table 10.

Table of Actual Cp for Combination of Observed Cp and % R&R

%R&R

0% 10% 20% 30% 40% 50% 60% 70%

0.50 0.50 0.50 0.50 0.51 0.51 0.52 0.53 0.55
0.60 0.60 0.60 0.61 0.61 0.62 0.64 0.66 0.69
0.70 0.70 0.70 0.71 0.72 0.74 0.77 0.80 0.85
0.80 0.80 0.80 0.81 0.83 0.86 0.90 0.96 1.06
0.90 0.90 0.90 0.92 0.95 0.99 1.06 1.16 1.33
1.00 1.00 1.01 1.03 1.07 1.13 1.23 1.40 1.73
1.10 1.10 1.11 1.14 1.19 1.28 1.43 1.72 2.49

Observed 1.20 1.20 1.21 1.25 1.32 1.45 1.68 2.20 5.83
Cp 1.30 1.30 1.32 1.36 1.46 1.63 1.99 3.11

1.40 1.40 1.42 1.48 1.61 1.85 2.42 6.81
1.50 1.50 1.52 1.60 1.76 2.10 3.08
1.60 1.60 1.63 1.72 1.93 2.40 4.41
1.70 1.70 1.73 1.85 2.11 2.79
1.80 1.80 1.84 1.98 2.32 3.31
1.90 1.90 1.95 2.12 2.54 4.09
2.00 2.00 2.06 2.26 2.80 5.52

Table 10
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Attribute Data

The concept of R&R studies are the same for attribute data as for variable data, but the
measurement of these is entirely different. The emphasis is on how capable or effective the
appraiser is in detecting conforming or nonconforming parts repeatedly and how biased the
appraiser is toward rejecting conforming parts or accepting nonconforming parts. The
effectiveness of different appraisers can be compared when assessing reproducibility.

The measures used in the inspection capability study for attribute data are defined as follows:

Effectiveness (E): The ability to accurately detect conforming and nonconforming parts. This
is expressed as a number between 0 and 1, where 1 is perfect, and is computed by:

  
E =

Number of Parts Correctly Identified
Total Opportunities to be Correct

The total opportunities to be correct are a function of the number of parts used and how many
times each part is inspected. If 10 parts are selected and each is inspected three times, there
are a total of 3 x 10 = 30 opportunities to be correct.

Probability of a Miss (Pmiss): The probability of a miss is the chance of not rejecting a
nonconforming part. This is a serious type of error since a nonconforming part is accepted.
The probability of a miss is computed by the following formula:

  
Pmiss =

number of misses
number of opportunities for a miss

The number of opportunities for a miss is a function of the number of nonconforming parts
used in the study and the number of times each part is inspected. If five nonconforming parts
are used and each part is inspected three times, there are 3 x 5 = 15 opportunities for a
miss.

Probability of a False Alarm (Pfa): The probability of a false alarm is the chance of rejecting a
conforming part. This type of error is not as serious as a miss, since a conforming part is
rejected. However, rejecting a conforming part causes rework and re-inspection to be
performed when it is not necessary. If the Pfa gets too large, large sums of money are wasted
on rework and re-inspection. The probability of a false alarm is computed by the following
formula:

  
Pfa =

number of false alarms
number of opportunities for false alarm

The number of opportunities for a false alarm is a function of the number of conforming parts
used in the study and the number of times each part is inspected. If six conforming parts are
used and each part is inspected three times, there are 3 x 6 = 18 opportunities for a false
alarm.
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Bias (B): Bias is a measure of the tendency to classify an item as conforming or
nonconforming. Bias is a function of Pmiss and Pfa. Bias values are equal to or greater than
zero and have the following interpretation:

B = 1 implies no bias.

B > 1 implies bias towards rejecting parts.

B < 1 implies bias towards accepting parts.

The value of bias is computed by:

 
  
B =

Pfa
Pmiss

Data Collection

The collection of samples for evaluating an inspection capability with attribute data is quite
different from collecting samples for variable data.

The parts are not selected at random. Parts are selected by appropriate personnel and must
be determined as conforming or nonconforming. The number of parts to be selected is shown
in table 11. The parts are selected so there will be one-third conforming, one-third
nonconforming and one-third marginal. Marginal parts are further divided so they are one-
half marginally conforming and one-half marginally nonconforming. This results in the total
sample being one-half conforming and one-half nonconforming.

Quantity of

Appraisers

Quantity of

Gages

Minimum

Number of

Parts

Minimum

Number of

Measurements

per Part

1 0 24 5

1 1

2 0 18 4

2 or More 1

2 2 or More

3 or More 0 12 3

2 or More 2 or More

Table 11

Once the parts are selected, they are inspected once in random order by each inspector and
the results are recorded on data sheets. Each inspector repeats an inspection and the results
are recorded on separate data sheets to eliminate unintentional bias. This is repeated until
the required number of inspections are completed. Inspectors should take a normal amount
of time for each inspection.
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Data Analysis

Analysis of the data is performed using the appropriate worksheets to compute Pmiss, Pfa, E
and B. The analysis procedure is illustrated by an example4.

The example is concerned with a plating operation on a printer part. The visual inspection
detects stains and deposits on the part after plating. Three persons are involved in the study:
the plating operator, inspector and lead inspector. Seventeen parts are selected initially and
after evaluation of the samples by the quality engineer, manufacturing engineer and
inspection supervisor, 14 parts (8 conforming and 6 nonconforming) were actually used in
the study. Each part was inspected three times. The data obtained is shown in table 12.

The column marked A/R contains the true condition of the part, where A is acceptable and R
is reject.

The analysis consists mainly of counting and division. The details of the computations are
shown in tables 13 and 14.

Attribute Example Data
Assembly A/R A B C

1 2 3 1 2 3 1 2 3
1 A A A A A A A A A A
2 R R R R R R R R R R
3 A A A A A A A A A A
4 R R R R R R R R R R
5 R R R R R A R R R R
6 A R R R A A A A A A
7 A R A R A A A A R A
8 A A A A A A A A A A
9 R R R R A A A A A A

10 A A A A A A A A A A
11 A A A A A A A A A A
12 R R R R R R R R R R
13 A A A A A A A A A A
14 R R R R R R R R R R

Table 12

                                                

4 Total Quality Management Handbook, Jack Hradesky, McGraw Hill, 1995
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Inspection Results

Appraiser Number
Good

Correct

Number
Bad

Correct

Number
Correct

Number
False

Alarms

Number
Miss

Number
Total

A 19 18 37 5 0 42
B 24 15 38 0 4 42
C 23 15 38 1 3 42

Table 13

Calculations

Appraiser E Pfa Pmiss

A 37/42=0.88 5/24=0.21 0/18=0

B 38/42=0.90 0/24=0 4/18=0.22

C 38/42=0.90 1/24=0.04 3/18=0.17

Table 14

The inspection capability study is evaluated using table 15 containing criteria for the
parameters. For any marginally acceptable or unacceptable gages or appraisers, corrective
action is required and when corrective action is completed, the inspection capability study
must be redone.

Attribute Data Criteria

Parameter Acceptable Marginal Unacceptable
E > 0.90 0.80 to 0.90 < 0.80
Pfa < 0.05 0.05 to 0.10 > 0.10

Pmiss < 0.02 0.02 to 0.05 > 0.05

Measurement Error Analysis Guide

Measurement Error Analysis (MEA) is a tool for determining consistency and repeatability of
a measurement system.  This tool considers operator technique and the discriminatory power
of the system.

Definition of Terms for This Section:

N s Number of samples to be run or compared.  Samples should be of a common
characteristic.

N o Number of operators in the study.

N r Number of readings, days, or times to repeat the study.



Prepared By:
Page 24 of 24 © dWizard’s Innovations in Systems Management

S e Standard Deviation of Error. A statistical measurement of inconsistency in the
measurement system.  This number reflects the consistency of the measurement
system.

S s Standard Deviation of Samples. A statistical measurement of the difference between
samples. This number reflects the amount of difference between the samples in the
study.

S o Standard Deviation of Operators. The statistical measurement of the difference
between individual operators. Is there a difference in how operators consistently read
each sample?

GCR Gage Classification Ratio. This ratio quantifies the measurement system’s ability to
discriminate between samples.  The higher the ratio, the more capable the
measurement system is of telling the difference between samples.

F Represents a ratio found in the F table. This number is used in a formula to help
determine if a significant technique difference is present between operators in a
measurement system. The F table is a commonly used statistical tool. There are
different levels or types of F tables. In an MEA, the 99% F table should always be used.
To find the appropriate ratio in the F table it is necessary to determine both horizontal
and vertical degrees of freedom (df).

Collecting the Data:

A commonly run and fairly easy MEA would involve a N s, N o, and N r of five (5).

The person conducting the study has several responsibilities to ensure a successful MEA.
The first is to obtain proper samples.  They should all be of a similar product line. For
example, if a facility wants to study micrometers, the person conducting the study could pick a
gauge of wire to use for samples (such as 13 Ga.).  He would not want to get five samples of
wire from the same carrier since there probably would not be a lot of variation within the
carrier.  Instead he would want to get a sample from five different carriers that were drawn on
different days, by different operators, on different machines and maybe even different heats of
raw material.  He would not want to use two samples of 13 Ga., 2 samples of 13 Ga., and one
sample of 12 Ga.  The important thing to remember is that you do not want samples exactly
alike or samples that are very different.

The second responsibility of the person conducting the MEA is to keep track of the samples
during the test.  The samples should be masked so that the persons involved in the test do
not know which samples are which.  Typically, when a MEA is done, the labels on the
samples are changed after each reading or day.  If the person conducting the test does not
maintain 100% control and traceability of the samples throughout the test, it is invalidated.  All
persons participating in the test should know that the labels are being changed.
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After the data is collected, the data from each operator should be placed in a form similar to
the one below.  Use a similar form to compile the data only.  The operators involved in the
study should not see or compare their measurements from day to day or between operators
in the study.  We are trying to determine the amount of variation in the measurement system.
If the measurements are all the same, it may invalidate the test.

Operator 1

Part 1 Part 2 Part 3 Part 4 Part 5
Day 1
Day 2
Day 3
Day 4
Day 5 Grand

Average
Range

Table 15

This is the basic information block that will help organize the data from each of the operators
involved in the test.  Once the data is in a structured format it is possible to determine S e, S s,
and S o.

Key Values:

S e Average the average ranges of each operator to determine the grand average of the
ranges.  Divide the grand range by the d2 value using N r for the subgroup sample size.
This is the Standard Deviation of Error.  The S e quantifies the total amount of variation
demonstrated by the measurement system.  In other words, if the operators in the study
measure a sample that was exactly X, you could expect the operators to measure it
between ±3 S e.

S s Average all of the operators Part 1 readings.  Repeat this for all of the parts.  When
finished, subtract the smallest part average from the largest part average to determine
the range.  Divide the range by a d2 value using the N s for the sample size.  This is the
Standard Deviation of the Samples.  The S s quantifies the total amount of variation
demonstrated between the samples.  Six (6) times S s tells us the total statistical
“spread” of the samples.

S o List the grand averages for each operator.  Subtract the smallest average from the
largest average to determine the range.  Divide the range by a d2 value using the N o

for the sample size.  This is the Standard Deviation of the Operators.  The S o can be
used to statistically quantify the difference in how the operators consistently see and
record the samples.
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With these three values it is now possible to determine the GCR and if there is a significant
difference in operator technique.

Gage Classification Ratio (GCR):

The GCR can be calculated by using the following formula:

    

Ss

Se

 
 
  

 
 * 1.414

Rules for GCR:

1. If the value is below one (1), it is not possible to tell the difference between samples.  The
measurement system can not discriminate between samples.

2. If the value is above one (1), it is possible to tell the difference between samples.  The
measurement system can discriminate.

The higher the value is above one (1), the higher the measurement system’s ability to
discriminate between samples.  One way to look at it is to take the range of the measured
product and divide it by the GCR.  These units are what the measurement system can
discriminate between.

Example: The range for 13 Ga. Wire is .090 - .092.  The total range is .002. The GCR is 4.
The measurement system can discriminate between 4 different sizes of 13 Ga:

0.0900 - 0.0905
0.0905 - 0.0910
0.0910 - 0.0915
0.0915 - 0.0920

Calculation for Significant Difference in Operator Technique:

This calculation can tell you if there is a statistical difference between operators and how they
read a measurement.  If they were using the exact same technique, there would be little or no
difference between operators.  The formula is as follows:

  
So *

N R * N S

F

 

 
 

 

 
 < Se

If the formula in parentheses is greater than the S e value, there is a significant difference in
operator technique.  Steps must be taken to ensure operator technique differences are
reduced before proceeding with the MEA.

Graphical Analysis:

A lot of information can be gained by putting the measurement error data into graphical form.
Put the data into an  X &  R  Chart.
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Grand Average:  Use the Grand average of all operators.

LCL and UCL:  Average range of all operators multiplied by A2 and added or subtracted 
from the grand average using the N r for the subgroup sample size.

    LCL = X − A2 * R ( )

    UCL = X + A2 * R ( )
URL: Average range of all operators multiplied by D 4.

    URL = A2 * R ( )
LRL: Average range of all operators multiplied by D 3.

    LRL = D3 * R ( )
When the chart limits are established, chart the sample averages from operator 1, operator 2,
etc.

Rules for Graphical Analysis of Measurement System:

Control limits are established using the range of readings by the operators.  The less
variation in the readings, the tighter the control limits.

Look for the following:

1. Low  URL--shows very little variation in the readings.

2. Narrow UCL and LCL--caused by low average range.  An ideal situation would be one in
which the UCL and LCL would very close, if not right on the grand average.

3. On the   X  chart, very few points, if any, should be within the control limits.  Unlike normal
  X − R  charts, the more points outside the control limits, the better.  This is for two
reasons.  The first is because of the narrow control limits described above.  The second
reason is also based, in part, on the control limits.  In theory, the variation between sample
size should be greater than variation within readings.  There should be enough difference
between samples to distinguish them beyond the variation of measurement error.

Extracting Actual Sigma from Observed Sigma:

Observed sigma = taken from the   X  chart.

    
Actual Sigma = Observed Sigma( )2 − Se

2
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Factors Table
Sample 

Size D2 A2 D3 D4

2 1.128 1.88 0.00 3.27
3 1.693 1.02 0.00 2.58
4 2.059 0.73 0.00 2.58
5 2.326 0.58 0.00 2.11
6 2.534 0.48 0.00 2.00
7 2.704 0.42 0.08 1.92
8 2.847 0.37 0.14 1.86
9 2.970 0.34 0.18 1.82

10 3.078 0.31 0.22 1.78
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