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The Guide to the Expression of Uncertainty in Measurement (GUM), published by ISO, is a key document 
used by National Measurement Institutes and industrial calibration laboratories as the basis of evaluating the 
uncertainty in the output of a measurement system.  
 
The system is modelled using a functional relationship between measured quantities x = {xi} (the inputs) and 
the measurement result y (the output) in the form 
 
 y f= ( ).x  
 
The (combined) standard uncertainty of y is then evaluated from 
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where the quantities ∂f/∂xi are referred to as sensitivity coefficients, and u(xi, xj) is the covariance of xi and xj, 
with u(xi, xi) = u2(xi), the variance of xi. The GUM recommends that the uncertainty in the measurement 
result y is expressed as a confidence interval at some probability level (typically 95%). The half-width of this 
interval is the expanded standard uncertainty U(y) obtained as the product of u(y) and a coverage factor k.  
 
To apply the GUM approach two main assumptions must hold: 
• The adequacy of the formula for u(y) which is derived by propagating uncertainties in a first-order 

approximation to the model of the measurement system.  
• The distribution of y is known, e.g., Gaussian or Student’s-t, in order to obtain the value of k. 
Some GUM users are experiencing problems in meeting these conditions, although it is important to confirm 
that they apply for a given application. 
 
NPL is involved, both internally and in collaboration with other National Measurement Institutes and 
standards bodies, in activities to promote sound methods of uncertainty evaluation. Although the GUM is a 
far-reaching document, and is appropriate for many applications, NPL’s work includes presenting extensions 
and enhancements to the GUM to cover situations in which the assumptions indicated above do not apply or 
are untested. It is also an intention to provide ‘easy-to-use’ computer-based approaches. 
 
Sampling techniques, such as Monte Carlo simulation, provide an alternative approach to uncertainty 
evaluation in which the propagation of uncertainties is undertaken numerically rather than analytically. Such 
techniques are useful for validating the results returned by the application of the GUM, as well as in 
circumstances where the assumptions made by the GUM do not apply. In fact, these techniques are able to 
provide much richer information, by propagating the distributions (rather than just the uncertainties) of the 
inputs x through the measurement model f to provide the distribution of the output y. From the output 
distribution confidence intervals or confidence regions (in the multivariate case) can be produced, as can 
other statistical information. 
 
The first figure shows how sampling techniques can be used to evaluate the uncertainty u(y). 
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STANDARD UNCERTAINTY OF THE OUTPUT 
 
Form N samples xk of the measured quantities x. 
 
For k = 1 to N, evaluate yk  from yk = f(xk). 
 
Evaluate sample standard deviation for the yk to give u(y). 

 
 
 
 
 
 
 
 
 
The input data {xk} for this process can  be provided in a number of ways. One way is to generate random 
samples {xk} from the (possibly joint) probability distribution for the inputs x. For example, x may be 
described by a multivariate Gaussian distribution with prescribed mean vector and covariance matrix. 
Alternatively, the components of x may be independent and each follow a given univariate Gaussian or 
uniform distribution. The application of the sampling scheme corresponds to a ‘Monte Carlo’ simulation 
(MCS). The scheme is not difficult to implement in general terms. Just the model and the input distributions 
(and not also its sensitivity coefficients as required by the GUM approach) are needed. 
 
Sampling techniques can also form the basis for calculating expanded uncertainties or confidence intervals. 
Given the yk as determined in the first figure, the second figure shows how to evaluate the 95% confidence 
interval for the measurement result y: 
 
 

CONFIDENCE INTERVAL FOR THE OUTPUT
 
Sort the values {yk} into non-decreasing order. 
 
Form the 2.5-and 97.5-percentiles in this list to define the 
required confidence interval. 

 
 

 
 
 
 
 
 
In the use of MCS to validate the results produced by the GUM in any individual case, the GUM results can 
be accepted if the resulting uncertainties agree to within, say, two significant figures (which is adequate for 
most purposes). If such agreement is not observed then either a mistake has been made in applying the GUM 
(e.g., in determining the sensitivity coefficients) or the conditions for its application do not hold. If the latter 
applies, it would be appropriate to regard the MCS results as being scientifically more sound. 
 
Both GUM and MCS work with the same model and input distributions, and the quality of the results 
obtained depends on that of this information. Moreover, MCS requires a value to be specified for N, the 
number of Monte Carlo trials. We have found N = 100,000 to be satisfactory in many (but not all) cases. 
 
Figures 1 and 2 illustrate the use of the GUM and MCS for the simple model y = x2. Figure 1 shows the 
sampling distribution for the input x which is chosen to be Gaussian with mean 0.5 and standard deviation 
0.2. Figure 2 shows the corresponding sampling distribution for y. Each distribution is based on a sampling 
size of N = 10,000. We also indicate in Figure 2 the 95% confidence intervals evaluated according to the 
GUM (broken lines) and using MCS (solid lines) as described above. The fact that these intervals are 
appreciably different reflects the non-Gaussian behaviour of the output y. The 95% confidence interval 
evaluated according to the GUM is clearly not reliable because it includes infeasible (negative) values of the 
output y. 
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Figure1: Sampling distribution for input x. 
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Figure 2: Sampling distribution for output y = x2. The 95% confidence intervals evaluated according to the 

GUM (broken lines) and using MCS (solid lines) are also shown. 
 
This article first appeared in Counting on IT Issue 8, available from NPL. 
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