Index

Section 1
- Introduction to HACCP
- Key Terms
- Identification of the HACCP Team
- HACCP Scope
- Terms of Reference
- Product Identification and Intended Use
- Product Description
- Methodology
- Written Process Flow

Section 2
- Completed Process Flow Diagram

Section 3
- Hazard Analysis Chart

Section 4
- CCP Decision Tree

Section 5
- Risk Assessments

Section 6
- HACCP Validation

Section 7
- HACCP Verification/HACCP Team meetings minutes

Section 8
- Records from Previous Verification
- HACCP Training Certificates
- References
- HACCP Audits
- Risk Assessments

Validation:
Name: Position: Date:
Name: Position: Date:
Section 1

An Introduction to HACCP

Hazard Analysis Critical Control Point, or HACCP, is a system that gives us a pro-active common sense approach to the safety management of our food products.

HACCP was originally designed in the early days of the American manned space programme, and was developed by the Pillsbury Company, NASA and the United States Army laboratories, to ensure the Microbiological safety of the astronauts’ food.

The HACCP system was launched publicly in 1971, and is designed to identify and control hazards that may occur anywhere in a food processing operation.

The benefits of the HACCP system are as follows;

- A Preventative System
- A Systematic Approach
- Helps demonstrate ‘Due Diligence’
- Internationally accepted
- Strengthens Quality Management Systems
- Facilitates regulatory inspection/external audits
- Demonstrates Management commitment.
Key terms

Critical Control Point (CCP):
The points in the operation that must be controlled in order to produce a safe product.

Target level:
A specified value for a control measure, which has been shown to eliminate or minimise a hazard at the critical point.

Tolerance:
A specified variation from the Target Level, which is acceptable – values outside this tolerance indicates a deviation.

Critical Limit:
The safety limit, which must always be met at each critical point.

Hazard:
A factor which cause harm to the consumer

Risk:
The likelihood of the hazard occurring.

GHP
Good Hygiene Practices or pre-requisite programs. Practices and procedures forming the basis of preventative actions.
- Receiving, Storage & Transport (e.g. Procedure for Receipt, Approved Supplier Program, etc)
- Calibration and Maintenance
- Cleaning and Sanitation
- Pest Control
- Staff Training & Personnel
- Product Identification and Traceability & Recall
- Premises (building and surrounds)

Risk Analysis Table
A tabulated record of all hazards that affect or have the potential to affect the safety of the product(s) under analysis. The significance of each hazard is rated as low, medium or high and control measures for each hazard are stated.
HACCP Table

Hazards identified in the Risk Analysis Table as being of medium or high significance and their respective control measures are transferred to the HACCP Table. The critical limit for each of these hazards is specified. Details of who will monitor the critical limit to make sure it is not broken are given. Actions to be taken when critical limits are broken are also given. Records of monitoring activities are listed.

Sev

Severity. The consequence of the hazard occurring.
- **H** = High = Life threatening or cause severe illness/injury.
- **M** = Medium = Moderate illness/injury, not life threatening
- **L** = Low = Mild illness/injury, not life threatening

Lik

Likelihood. The likelihood of the hazard occurring.
- **H** = High = Likely to occur often
- **M** = Medium = May occur sometimes
- **L** = Low = Unlikely to occur

Sig

Significance. The consequence of the hazard occurring. When both severity and likelihood are high, the significance is high.
HACCP TEAM

An appropriate HACCP team will be composed of: a HACCP consultant, a General Manager at the processing plant.

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Qualifications / Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>HACCP Team Leader</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Manager</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HACCP Scope

The HACCP Team have identified the Scope of this study as being:

Storage and distribution of all range of eggs without any processing.

From the intake of product to the arrival of the product at the customers facilities, taking into account all possible Microbiological, Chemical or Physical hazards which could occur during this process.

The HACCP Team will ensure that all working practices adhere to all current food safety legislation.
Terms of Reference

The HACCP team have determined to address the potential of Microbiological, Chemical and Physical contamination through the process of Intake, Handling, Storage and Distribution of product from intake to delivery of the product to the customers’ facilities.

The HACCP study takes into consideration that the company operates prerequisite programmes, which include:

- Good Manufacturing Practice
- Preventative Maintenance
- Personnel and Training
- Process Control
- Calibration
- Storage and Transportation
- Traceability and Product Recall

During the formulation of the HACCP study, the team will review the various codes of practice and food regulations and will take the following food safety legislation and Codes of Practice into consideration throughout the study;

- European Communities (Hygiene of Foodstuffs) Regulations 2004
- Codex Alimentarius 2009
- Hazard Analysis and Critical Control Points (Codex 1997).
- Customer Guidance Literature.
Product Identification, Intended Use and Process

The product is received into the facility in pre-packed at source or in loose format. They are all suitable for all consumer groups with exception to those who suffer allergy reaction from eggs. Allergen risk assessment has been conducted.

The HACCP team have determined flow analysis of the process:

- Product distributed as products pre-packed/labelled.

The following information determines a written process flow for process.
Product Description

<table>
<thead>
<tr>
<th>Description:</th>
<th>Egg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Formulation</td>
<td>Fresh Class A eggs</td>
</tr>
<tr>
<td>Food Additives</td>
<td>None</td>
</tr>
<tr>
<td>Processing Aids</td>
<td>None</td>
</tr>
<tr>
<td>Preservatives (Minimum concentration)</td>
<td>None</td>
</tr>
</tbody>
</table>
| **Processing Procedure** | 1. Intake of eggs with documentation from producer
2. Visual check of eggs for cleanliness & check documentation
3. Grading, candling and coding of eggs within 10 days of delivery
4. Packing and labelling
5. Dispatch |
| **Packaging:** | Food grade and compliant with articles in contact with food regulation |
| **Labelling requirements relating to Food Safety** | 1. Labelled with date of minimum durability not more than 28 days from date of lay
| **Storage conditions:** | 1. Clean and free from pests and extraneous odours
2. stored on clean trays, well away from walls and ceilings
3. constant temperature, no temperature fluctuations (<18°C)
4. good air circulation |
| **Method of Preservation (pH, a_w, time temp etc)** | Consumption within shelf life, not more than 28 days. Store at constant temperature, no temperature fluctuation (<18°C) |
| **Product Shelf Life** | Not more than 28 days from day of lay
Sell to final consumer within 21 days |
| **Method of distribution:** | Within country product is transported in refrigerated enclosed trucks.
Generally consignments do not consist of more than one product. |
| **Vulnerable groups of population:** | For general consumption, consumers should keep refrigerated after purchase. Eggs to be consumed within date of minimum durability, not more than 28 days from date of lay |
| **Potential for abuse:** | 1. Eggs are left un-chilled at fluctuating temperatures in a warm kitchen
2. Eggs not consumed by their ‘best before’ date |

Validation:

<table>
<thead>
<tr>
<th>Name:</th>
<th>Position:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Position:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HACCP Verification, Validation and Review Procedure

HACCP Team verified the HACCP process flow diagram by walking all the processes to ensure that the diagram was accurate.

It has been determined by the HACCP team during this study that there are 3 CCP’s
 1. Delivery to the Packing Centre
 2. Candling
 3. Coding

An assessment of the HACCP Study will be conducted at the Management Review. Full reviews will be conducted once per annum on the complete HACCP system and also when new or amended products, processes, or equipment are to be introduced. This includes any work to be carried out by contractors. Validation of all control measures will be conducted by competent qualified staff and will be conducted during the Quality Assurance Auditing Programme as detailed in the Procedures Manual.

In the event that any of the above verification procedures show that the HACCP plan requires review, a meeting of the HACCP team will take place in order to agree corrective actions.

All HACCP team members will ensure all staff within their area/department are trained in all control measures and C.C.P monitoring and adhere to the above guidelines.
Methodology

The flow chart has been designed, so that each step has been allocated a number. All steps that are repeated throughout the process have been allocated the same number, to save repetition in the Risk Analysis Table.

The method used to establish CCP’s within this HACCP Plan has been based on the significance of each hazard as determined by the Risk Analysis Table.

Hazards which can be controlled, prevented or eliminated by the application of Good Hygiene Practices (GHP) are not included in the HACCP Table. Therefore, these hazards have been identified in the Risk Analysis Table and have not been carried forward to the HACCP Table as CCP’s.

All other hazards not controlled by GHP and defined as highly significant within the Risk Analysis Table have been carried over to the HACCP Table as a CCP. These hazards are all monitored and a record of that activity maintained.

Hazards defined as less than significant within the Risk Analysis Table are not carried over to the HACCP Table and may not be monitored or a record maintained.

Total assessed risk = Likelihood x Severity

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Improbable event: Once every five years</td>
<td>1 = Negligible: no impact or not detectable</td>
</tr>
<tr>
<td>2 = Remote possibility: Once per year</td>
<td>2 = Marginal impact: only internal company target levels effected</td>
</tr>
<tr>
<td>3 = Occasional event: Once per month</td>
<td>3 = Significant: impact on critical limits</td>
</tr>
<tr>
<td>4 = Probable even: Once per week</td>
<td>4 = Major: impact on customers (not necessarily the public)</td>
</tr>
<tr>
<td>5 = Frequent event: Once per day</td>
<td>5 = Critical: public health risk, public product recall.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

Validation:
Name: Position: Date:

Name: Position: Date:
Process flow

Product arrives at the facility within a designated loading/intake area, intake arrival checks are completed by the operative to ensure correct quantities are received and each product line is labelled with its own traceability number. Product is then transferred into the relevant temperature controlled storage area in a static cold store. Products remain in the relevant temperature controlled storage area until required for daily orders, when they are brought into the relevant grading area. Products are candled and segregated. The waste product is removed and transferred to the designated area. Product is graded by weighing and traceability and date coding is applied. Products are brought into relevant dispatch area, box end labels are applied by hand and the product is placed on pallets. Storage temperature is controlled manually daily accordingly to the schedule. The operative conducts a final despatch check to ensure temperature and label compliance. When authorised by the Manager, by way of a positive release labelling system, the product is loaded onto a temperature-controlled vehicle and is delivered direct into the customers.
Section 2

Process flow diagram
Step 1
Product arrives to the packing station CCP1

Step 2
Arrival checks completed in goods in area. Traceability attached.

Step 3
Unloading eggs from trays onto a conveyor

Step 4
Candling CCP2

Step 5
Transportation to trays

Step 6
Grading Weighing

Step 7
Coding (traceability, date coding, quality symbol) CCP3

Step 8
Boxing and labelling

Step 10
Wrapped and Palleted

Step 11
Finished product loaded on to temperature controlled vehicle and despatched

Validation:
Name: Position: Date:

Name: Position: Date:
Section 3

Hazard analysis

Biological
Biological hazards are the main hazards that can affect eggs.

(a) Salmonella
Salmonella is the main pathogenic bacterium associated with eggs. The illness caused by this bacterium (salmonellosis) can affect anyone; however, it is more commonly reported in children under five years of age. Symptoms are often more severe in the elderly, the very young and people with other medical conditions. **Symptoms:** The most common symptoms are diarrhoea, fever, stomach cramps, nausea, vomiting and headache. In extreme cases the illness can result in death.

(b) Sources of Salmonella
The primary sources of Salmonella are the intestinal tracts of animals and birds. Animals may become infected from the consumption of contaminated feed or water or contact with infected animals.

(c) Contamination of Eggs
Pathogenic bacteria such as Salmonella may contaminate eggs either by:
- Movement of bacteria through the shell. This is particularly so when the shell is soiled or damaged; or
- Infection of the egg during its development in the hen. Strains of a type of Salmonella (Salmonella Enteritidis) can affect the reproductive tissue in hens with the result that eggs may already be contaminated at the time of laying. This type of Salmonella has caused many food poisoning outbreaks overseas. Therefore, it is important that effective hygiene measures are adopted for the production of eggs and egg products.

(d) Outbreaks of Salmonella Food Poisoning Associated with Eggs
Outbreaks have been traced to:
- Use of raw eggs, for example in mayonnaise, egg nogs or gelati;
- Eggs only undergoing a mild cooking process, for example, in hollandaise sauce or soft boiled eggs;
- Cross contamination, for example, in bakeries where uncooked product (such as imitation cream) have been prepared using utensils used for uncooked egg mix;
- Unhygienic methods of production of shell eggs.
Physical
A shell and therefore the likelihood of foreign bodies, (such as glass, metal, rodent droppings, hair, insects, larvae, wood, splinters and rust), protect eggs affecting them is small. The risk lies in the possibility of foreign objects on the outside of the shell getting into the egg when the egg is cracked. Some foreign bodies such as blood spots are present in the egg when they are laid. These could be present in the egg at the time of sale if eggs are not carefully checked during grading. Blood spots and meat spots are unlikely to represent a serious public health problem.

Chemical
Cleaning chemicals and pest control chemicals/baits are toxic and can have harmful effects if consumed. They can also ‘taint’ the flavour of food. Chemical contamination can arise from the incorrect use of sanitisers during general cleaning and washing of eggs and also through the incorrect storage of chemicals. This could result in these chemicals entering the egg through the pores in the shell
<table>
<thead>
<tr>
<th>Process Step</th>
<th>Hazard & Source/Cause</th>
<th>Likely Occurrence (High / Medium / Low)</th>
<th>Adverse Health Effects (H/M/L)</th>
<th>Control Measures</th>
</tr>
</thead>
</table>
| 1. Product arrives to the packing station CCP | **Physical Hazards**
- External contamination from rain water, bird droppings, vermin/rodents and flying insects during in loading process.
- Glass contamination from internal light sources.
- Pests/rodents and or Flying insects due to poor hygiene/debris build up
- Physical risks from straps/thermocouples/staples/foreign bodies found on pallets on intake.
Chemical Hazards
Chemical contamination from Chemical at source.
Microbiological Hazards
Microbiological contamination during process at the source | Low | Medium | - Curtains/cushions fitted to all loading bays to prevent external contamination.
- Prerequisite programmes in place to control all named hazards, include: Daily hygiene schedules and cleaning programmes, glass policy and daily audits.
- External and internal Pest control programmes. EFKs in place in intake areas.
- All light fittings covered.
- Supplier Q.A.S systems and HACCP in place and verified/audited by the Manager to eliminate/reduce potential foreign body or Microbiological contamination.
- Intake inspections to identify foreign body contamination on arrival
- Chemical used at source in conjunction with E.E.C/Local regulations
- Supplier Q.A.S in place and regularly audited: validation by way of microbiological testing programme, records retained
- Supplier Q.A.S systems and HACCP in place and verified/audited by the Manager to eliminate/reduce potential foreign body or Microbiological contamination.
- All staff trained in correct substance control/usage. | - Operatives trained in Food safety/hygiene programmes with records |
| 2. Arrival checks | **Physical Hazards** | Medium | High |

Validation:
Name: ___________________________ Position: ________________ Date: ________________
Name: ___________________________ Position: ________________ Date: ________________
<table>
<thead>
<tr>
<th>Validation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
</tr>
</tbody>
</table>

2A. Waste removed

Physical Hazards
- Physical contamination from operator
- Foreign body/Dust contamination from warehouse environment.

| Low | Low |

- Staff hygiene policy/programmes in place with all site staff trained and records of training maintained and retained on personnel files.

3. Unloading eggs from trays onto a conveyor

Physical Hazards
- Physical contamination from Warehouse operatives.
- Glass contamination from internal light sources.
- Pests/rodents and or Flying insects due to poor hygiene/debris build up

| Low | Medium |

- Prerequisites in place to control named hazards include:
 - Daily hygiene schedules and cleaning programmes, Glass policy and weekly glass audits, Pest control programmes and EFKs in intake areas maintained by external contractor,
 - Staff awareness/training programmes in place with records of training retained/filed.

3A. Waste packaging removed

Physical Hazards
- Physical contamination from operator
- Foreign body/Dust contamination from warehouse environment.

| Low | Low |

- Staff hygiene policy/programmes in place with all site staff trained and records of training maintained and retained on personnel files.

4. Candling

Microbiological Hazards
- Microbiological growth due to breakdown of product

| Medium | High |

- Prerequisites in place to control named hazards include:
 - Q.A.S in place and regularly audited: validation by way of microbiological testing programme, records retained
 - All staff trained in correct substance control/usage
 - Operatives trained in Food safety/hygiene programmes with records of training maintained and held on personnel files.
 - Any foreign body contamination identified escalated to Management, positive release system in place and adhered to by all teams.
 - Chemicals stored in designed area, All staff trained in correct substance use, only Food Grade chemicals in use.

Physical Hazards
- Physical contamination from operatives.
- Glass contamination from internal light sources.
- Pests/rodents and or Flying insects due to poor hygiene/debris build up

| Low | Low |

Chemical Hazards
- Chemical contamination due to incorrect formulation or use of unauthorised cleaning substances

| Low | High |
6. Transportation to trays

Physical Hazards
- Physical contamination from warehouse operatives.
- Glass contamination from internal light sources.
- Pests/rodents and or Flying insects due to poor hygiene/debris build up

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Control Measures</th>
</tr>
</thead>
</table>

- Operatives trained in Food safety/hygiene programmes with records of training maintained and held on personnel files.
- Any foreign body contamination identified escalated to Management, positive release system in place and adhered to by all teams
- Prerequisites in place to control named hazards include; Daily hygiene schedules and cleaning programmes, Glass policy and weekly glass audits, Pest control programmes and EFKs in intake areas maintained by external contractor.

7. Grading Weighing

Physical Hazards
- Physical contamination from operatives.
- Glass contamination from internal light sources.
- Pests/rodents and or Flying insects due to poor hygiene/debris build up

Chemical Hazards
- Chemical contamination due use of unauthorised substances

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Control Measures</th>
</tr>
</thead>
</table>

- Operatives trained in Food safety/hygiene programmes with records of training maintained and held on personnel files.
- Any foreign body contamination identified escalated to Management, positive release system in place and adhered to by all teams.

7A. Waste transferred to designated area

Physical Hazards
- Physical contamination from Warehouse operatives.
- Glass contamination from internal light sources.
- Pests/rodents and or Flying insects due to poor hygiene/debris build up

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Control Measures</th>
</tr>
</thead>
</table>

- Personnel hygiene policies and procedures in place with all staff aware/trained with records of training.

8. Coding (traceability, date coding)

CCP

Microbiological Hazards
- Microbiological growth due to incorrect date coding

Chemical Hazards
- Chemical contamination due use of unauthorised substances

<table>
<thead>
<tr>
<th>Risk Level</th>
<th>Control Measures</th>
</tr>
</thead>
</table>

- Prerequisites in place to control named hazards include;
- Q.A.S in place and regularly audited; validation by way of microbiological testing programme, records retained
- All staff trained in correct substance control/usage
- Coding checks conducted at start of each run on every delivery.
<table>
<thead>
<tr>
<th>Validation:</th>
<th>Name:</th>
<th>Position:</th>
<th>Date:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HACCP Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg Packing Centre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrective action:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stop production</td>
</tr>
<tr>
<td>2. Check coder</td>
</tr>
<tr>
<td>3. Check best before date: 28 days from date of lay</td>
</tr>
<tr>
<td>4. Reject deliveries of non grade ink</td>
</tr>
<tr>
<td>- Chemicals stored in designed area, All staff trained in correct substance use, only Food Grade chemicals in use.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Boxing and labelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Hazards</td>
</tr>
<tr>
<td>- Physical contamination from warehouse operatives.</td>
</tr>
<tr>
<td>- Glass contamination from internal light sources.</td>
</tr>
<tr>
<td>- Pests/rodents and or Flying insects due to poor hygiene/debris build up</td>
</tr>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

- At this stage of the process the product is packed and sealed and the risk of contamination is highly unlikely.

<table>
<thead>
<tr>
<th>10. Products transferred on to pallet and wrapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Hazards</td>
</tr>
<tr>
<td>- Physical contamination from warehouse operatives.</td>
</tr>
<tr>
<td>- Glass contamination from internal light sources.</td>
</tr>
<tr>
<td>- Pests/rodents and or Flying insects due to poor hygiene/debris build up</td>
</tr>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

- At this stage of the process the product is packed and sealed and the risk of contamination is highly unlikely.

<table>
<thead>
<tr>
<th>11. Products loaded on to vehicle and despatched.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Hazards</td>
</tr>
<tr>
<td>- External contamination from bird droppings and / or rain water.</td>
</tr>
<tr>
<td>Physical / Chemical / Microbiological Hazard</td>
</tr>
<tr>
<td>- Cross Contamination or Taint of finished product due to poor trailer hygiene.</td>
</tr>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

- All bay doors fitted with curtains/cushions to prevent external contamination.
- Hygiene programmes in place, trailers cleaned and sanitised at regular intervals by external contractor, records retained
- Trailer hygiene monitored during despatch procedures

<table>
<thead>
<tr>
<th>Microbiological Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Microbiological growth due to breakdown of refrigeration unit on truck</td>
</tr>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

- Prerequisites in place to control named hazards include;
- Procedures for maintenance, refrigeration breakdown procedure
Section 4
CCP Decision Tree

The CCP decision tree is as follows:

Q1 - Do control measure(s) exist for the identified hazard?

YES

Q2 - Is the step specifically designed to eliminate or reduce a hazard to an acceptable level?

YES

NO

Q3 - Could contamination occur at or increase to unacceptable level(s)

YES

NO

Q4 - Will a subsequent step eliminate or reduce the likely occurrence of the hazard to an acceptable level?

YES

NO

NOT A CCP

CCP Determination: A CCP is a step at which control can be applied and is essential to prevent or eliminate a food safety hazard or reduce it to an acceptable level. The information collated during the hazard analysis allows for the identification of CCP’s. To assist in the decision making process of determining CCP’s a CCP decision tree was used.

Validation:
Name: Position: Date:

Name: Position: Date:
CCP decision tree

<table>
<thead>
<tr>
<th>Process Step Hazard</th>
<th>Q1</th>
<th>Q2</th>
<th>Q2a</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>CCP</th>
<th>Team comment</th>
</tr>
</thead>
</table>
| **1. Product arrives to the Packing station.**
Physical contamination | Y | Y | - | N | Y | Y | No | All loading doors fitted with curtains Buffers; Intake staff advised to highlight all foreign body issues on arrival - inspections to increase detail of examination; Glass policy/audits in place and maintained; Glass policy/audits in place and maintained |
| **1. Product arrives in temperature controlled goods in area.**
Chemical contamination | Y | Y | - | N | N | - | No | Approved suppliers used at all times. |
| **1. Product arrives in temperature controlled goods in area.**
Microbiological contamination.
CCP | Y | N | - | Y | N | - | YES | Supplier assurance system in place, to include H.A.C.C.P |
| **2. Arrival checks completed & traceability attached**
Physical contamination | Y | Y | - | N | Y | Y | No | Personal hygiene policy in place and monitored; Glass policy/audits in place and maintained; Pest control programme in place and maintained to include bait stations and EFK's |
| **2A. Waste removed**
Physical contamination | Y | Y | - | N | Y | Y | No | Personal hygiene policy in place and monitored |
| **3. Unloading eggs from trays onto a conveyer**
Physical contamination | Y | Y | - | N | Y | Y | No | Personal hygiene policy in place and monitored |
| **3A. Waste packaging removed**
Physical contamination | Y | Y | - | N | Y | Y | No | Personal hygiene policy in place and monitored |
| **4. Candling**
Microbiological contamination.
CCP | Y | N | - | Y | N | - | YES | Prerequisites in place to control named hazards include; Q.A.S in place and regularly audited: validation by way of |

Validation:
Name: __________________________
Position: ________________________
Date: ___________________________
Name: __________________________
Position: ________________________
Date: ___________________________
<table>
<thead>
<tr>
<th>Area</th>
<th>Physical contamination</th>
<th>Chemical contamination</th>
<th>Microbiological contamination</th>
<th>CCP</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Candling</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>Physical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>4. Chemical contamination</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N - No</td>
</tr>
<tr>
<td>5. Transportation to trays</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>Physical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>6. Grading and Weighing</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>Physical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>6. Grading and Weighing</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>Chemical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>7. Coding (traceability, date coding)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>Chemical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>7A. Waste transferred to designated area</td>
<td>Y</td>
<td>Y</td>
<td>-</td>
<td>N</td>
<td>Y Y Y</td>
</tr>
<tr>
<td>Physical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>8. Boxing and labelling</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>Physical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y Y - N Y Y</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
<td>Physical contamination</td>
<td>Chemical contamination</td>
<td>Microbiological contamination</td>
<td>Validation</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>10.</td>
<td>Products transferred on to pallet and wrapped</td>
<td>Y Y - N N - No</td>
<td>No</td>
<td></td>
<td>Personal hygiene policy in place and monitored</td>
</tr>
<tr>
<td></td>
<td>Physical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Product loaded on to vehicle and dispatched.</td>
<td>Y Y - N N - No</td>
<td>No</td>
<td></td>
<td>Vehicle hygiene checks in place</td>
</tr>
<tr>
<td></td>
<td>Chemical contamination</td>
<td></td>
<td></td>
<td></td>
<td>Records of cleaning retained and inspected monthly.</td>
</tr>
<tr>
<td>11.</td>
<td>Product loaded on to vehicle and dispatched.</td>
<td>Y Y - N N - No</td>
<td>No</td>
<td></td>
<td>Vehicle hygiene checks in place</td>
</tr>
<tr>
<td></td>
<td>Microbiological contamination</td>
<td></td>
<td></td>
<td></td>
<td>Records of cleaning retained and inspected monthly.</td>
</tr>
<tr>
<td>11.</td>
<td>Product loaded on to temperature controlled</td>
<td>Y Y - N Y Y No</td>
<td>No</td>
<td></td>
<td>All loading doors fitted with Curtains buffers</td>
</tr>
<tr>
<td></td>
<td>vehicle and dispatched.</td>
<td></td>
<td></td>
<td></td>
<td>Physical contamination</td>
</tr>
<tr>
<td></td>
<td>Physical contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 5

Risk assessments

Risk Assessment Table for Raw Materials: Allergens & Identity Preserved Products

<table>
<thead>
<tr>
<th>Name of Product</th>
<th>Is it an ID preserved product?</th>
<th>Intended Consumer</th>
<th>Finished Product Spec on File</th>
<th>Key method of control i.e. PH Temp?</th>
<th>Step in Process that has potential for sabotage or Accidental Adulteration?</th>
<th>List of ingredients & additives</th>
<th>Food Additives</th>
<th>Preservatives</th>
<th>Allergens</th>
<th>Intolerance</th>
<th>Supplier Approved</th>
<th>Cert Held</th>
<th>What controls are in place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>Yes</td>
<td>General Population Inc Children & elderly</td>
<td>Yes Product segregation</td>
<td>Yes storage – No segregation</td>
<td>N/A</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>Supplier approved. All certs held by supplier</td>
<td>Segregated storage</td>
</tr>
</tbody>
</table>

Validation:

Name:
Position:
Date:
Risk Assessment for Foreign body contamination, Plastic, Glass and Wood

<table>
<thead>
<tr>
<th>Location</th>
<th>Assessment Date</th>
<th>March 2010</th>
<th>Last assessment Date</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazards identified</td>
<td>Risk assessment to consider foreign body contamination including Plastic, Wood and Glass on site</td>
<td></td>
<td>Calculate Hazard Rating – Frequency ((Sv + Prb))</td>
<td>Rating</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frequency</td>
<td>Severity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Control Measures

Control to reduce or eliminate risk

1. Glass register and weekly glass audit

2. Weekly Hygiene audit checks general house keeping for and foreign bodies. If there is a repeat issue it will be marked Red. This audit is bonus related and is discussed at the weekly management meeting

3. Broken pallets are removed to outside the compactor area and dumped into a skip.

4. All damaged crates are removed to the waste area and returned.

5. Glass breakage procedure are followed and completed if there is a breakage.

6. All staff receive Hygiene and Food safety training

7. Jewellery policy enforced and monitored via the Hygiene audit

Low risk.
Section 6

Validation table

<table>
<thead>
<tr>
<th>Potential Hazard</th>
<th>Critical Limits</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>Sampling plan on microbiological criteria for foodstuffs</td>
<td>Commission Regulation (EC) No: 2073/2005 15<sup>th</sup> November 2005</td>
</tr>
<tr>
<td>Pesticides</td>
<td>Control of MRL (pesticide) levels in food</td>
<td>Commission Regulation (EC) No: 396/2005 23<sup>rd</sup> February 2005</td>
</tr>
</tbody>
</table>

Validation:

Name:
Position:
Date:

Name:
Position:
Date: