List of Reliability Standards

Marc

Fully vaccinated are you?
Leader
Below the basic standards and their descriptions are listed. Also see this page: Reliability, Maintainability, and Dependability Standards List

Reliability Standards & Handbooks

MIL-HDBK-H 108 Sampling Procedures and Tables for Life and Reliability Testing (Based on Exponential Distribution)

This handbook provides procedures and tables based on the exponential distribution for life and reliability testing. It includes definitions required for the use of the life test sampling plans and procedures; general description of life test sampling plans; life tests terminated upon occurrence of preassigned number of failures; life tests terminated at preassigned time; and sequential life test sampling plans.

MIL-HDBK-189 Reliability Growth Management

This document is designed for both managers and analysts covering everything from simple fundamentals to detailed technical analysis. Included are concepts and principles of reliability growth, advantages of managing reliability growth, and guidelines and procedures used to manage reliability growth. It allows the development of a plan that will aid in developing a final system that meets requirements and lowers the life-cycle cost of the fielded system. The document includes sections on benefits, concepts, engineering analysis, and growth models.


MIL-HDBK-217F Reliability Prediction of Electronic Equipment

The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability of electronic equipment and systems. It provides a common basis for reliability predictions. This handbook includes two basic methods for reliability prediction of electronic equipment. The first method is the part stress analysis prediction technique, employing complex models using detailed stress analysis information as well as environment, quality applications, maximum ratings, complexity, temperature, construction, and a number of other application-related factors. The second is a simple method called the parts count reliability prediction technique, using primarily the number of parts of each category with consideration of part quality, environments encountered, and maturity of the production process. The simple method is beneficial in early trade-off studies and situations where the detailed circuit design is unknown. The complex method requires detailed study and analysis which is available when the circuit design has been defined. Samples of each type of calculation are provided.


MIL-HDBK-251 Reliability/Design Thermal Applications

This document details approaches to thermal design; methods for the determination of thermal requirements; selection of cooling methods; natural methods of cooling; thermal design for forced air, liquid-cooled, vaporization, and special (heat pipes) cooling systems. Topics covered are the standard hardware program thermal design, installation requirements, thermal evaluation, improving existing designs, and thermal characteristics of parts. Stress analysis methods are emphasized and specific step by step thermal design procedures are given.


MlL-HDBK-263A Electrostatic Discharge Control Handbook for Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices)

This handbook provides guidance for developing, implementing and monitoring an ESD control program for electronic parts, assemblies and equipment in accordance with the requirements of MIL-STD-1686. This document includes definitions, causes and effects (including failure mechanisms), charge sources, list and category of electrostatic-sensitive devices by part type, testing, application information, considerations, and protective networks. The specific guidance provided is supplemented by technical data contained in the appendices. Table I provides a cross-reference listing of MIL-STD-1686 requirements, MIL-HDBK-263 guidance, and MIL-HDBK-263 supplementary technical data.


MIL-HDBK-338 Electronic Reliability Design Handbook

This handbook provides procuring activities and contractors with an understanding of the concepts, principles, and methodologies covering all aspects of electronic systems reliability engineering and cost analysis as they relate to the design, acquisition, and deployment of equipment or systems. Currently a two-volume set, it discusses the entire subject, heavily emphasizing the reasons for the reliability discipline. It includes general information, referenced documents, definitions, reliability theory, component reliability design considerations, application guidelines, specification control during acquisition, logistic support, failure reporting and analysis, reliability and maintainability theory, reliability specification allocation and prediction, reliability engineering design guidelines, reliability data collection and analysis, demonstration and growth, software reliability, systems reliability engineering, production and deployment reliability and maintainability (R&M), and R&M management considerations.


MIL-HDBK-344 Environmental Stress Screening of Electronic Equipment

This handbook provides uniform procedures, methods and techniques for planning, monitoring and controlling the cost effectiveness of ESS programs for electronic equipment. It is intended to support the requirements of MIL-STD-785, Task 301, "Environmental Stress Screening" and/or MIL-STD-781 and Task 401, "Environmental Stress Screening".


MIL-STD-690C Failure Rate Sampling Plans and Procedures

This standard provides procedures for failure rate qualification, sampling plans for establishing and maintaining failure rate levels at selected confidence levels, and lot conformance inspection procedures associated with failure rate testing for the purpose of direct reference in appropriate military electronic parts established reliability (ER) specifications. Figures and tables throughout this standard are based on exponential distribution.


MIL-STD-721C Definition of Terms for Reliability and Maintainability

This standard defines terms and definitions used most frequently in specifying Reliability and Maintainability (R & M). Provides a common definition for the Department of Defense and defense contractors.


MIL-STD-756B Reliability Modeling and Prediction

This standard establishes uniform procedures and ground rules for the generating mission reliability and basic reliability models and predictions for electronic, electrical, electromechanical, mechanical, and ordnance systems and equipments. Model complexity may range from a complete system to the simplest subdivision of a system. It details the methods for determining service use (life cycle), creation of the reliability block diagram, construction of the mathematical model for computing the item reliability. Some simple explanations on the applicability and suitability of the various prediction sources and methods are included.


MIL-HDBK-781 Reliability Test Methods, Plans and Environments for Engineering Development, Qualification and Production

This handbook provides test methods, test plans, and test environmental profiles which can be used in reliability testing during the development, qualification, and production of systems and equipment. This handbook is designed to be used with MIL-STD-781. The test methods, test plans, and environmental profile data are presented in a manner which facilitates their use with the tailorable tasks of MIL-STD-781.


MIL-STD-781D Reliability Design Qualification and Production Acceptance Tests: Exponential/ Distribution

This document covers the requirements and provides details for reliability testing during the development, qualification, and production of systems and equipment with an exponential time-to-failure distribution. It establishes the tailorable requirements for reliability testing performed during integrated test programs specified in MIL-STD-785. Task descriptions for Reliability Development/ Growth Testing (RD/GT), Reliability Qualification Testing (RQT), Production Reliability Acceptance Tests (PRAT), and Environmental Stress Screening (ESS) are defined. Test time is stated in multiples of the design Mean Time Between Failures (MTBF). Specifying any two of three parameters, i.e., lower test MTBF, upper test MTBF, or their ratio, given the desired decision risks, determines the test plan to be utilized. This standard is applicable to six broad categories of equipment, distinguished according to their field service applications.


MlL-STD-785B Reliability Program for Systems and Equipment, Development and Production

This document provides general requirements and specific tasks for reliability programs. It is used for reliability program planning and includes task descriptions for basic application requirements including sections on program surveillance and control, design and evaluation, development and production testing. An appendix for application guidance for implementation of reliability program requirements is also included. The subsections are in the form of purpose, task description, and details to be specified by the procuring activity. This is a program management document, not a typical detailed what-to-do standard document.


MlL-STD-790E Reliability Assurance Program for Electronic Parts Specifications

This document establishes the criteria for electronic and fiber optic parts product assurance programs which are to be met by manufacturers qualifying electronic parts to specification. Typical topics covered are document submission, organizational structure, test facilities, and failure analysis reports.


MIL-STD-1543B Reliability Program Requirements for Space and Missile Systems

This document establishes uniform reliability program requirements and tasks for use during design, development, fabrication, test, and operation of space and launch vehicles. Topics covered in this document are design for reliability; failure mode, effects, and criticality analysis (FMECA), reliability analysis; modeling and prediction; discrepancy and failure reporting; maximum preacceptance operation; effects of testing, storage, shelf life; packaging, transportation, handling, and maintainability. It gives application guidance and an appendix for FMEA for space and launch vehicle systems.


MIL-STD-1629A Procedures for Performing a Failure Mode, Effects, and Criticality Analysis

This document shows how to perform a Failure Mode, Effects, and Criticality Analysis (FMECA). It establishes requirements and procedures for performing a FMECA to systematically evaluate and document, by item failure mode analysis, the potential impact of each functional or hardware failure on mission success, personnel and system safety, system performance, maintainability, and maintenance requirements. Each potential failure is ranked by the severity of its effect in order that appropriate corrective actions may be taken to eliminate or control the high risk items. It details the functional block diagram modeling method, defines severity classification and criticality numbers. It provides sample formats for a FMEA, criticality analysis, FMEA and criticality analysis maintainability information sheet, and damage mode and effects analysis sheet. The document also provides several examples.


MIL-STD-1686B Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies and Equipment (Excluding Electrically Initiated Explosive Devices)

The purpose of this standard is to establish the requirements for an ESD control program to minimize the effects of ESD on parts, assemblies, and equipment. This standard defines the requirements for an ESD control program for electrical and electronic parts, assemblies, and equipment, susceptible to damage from ESD. It covers identification, testing, classification, assembly and equipment design criteria protected work areas, handling procedures, training, marking of documentation and hardware, protective covering, packaging and marking, and installation for assemblies and equipment. Also included are quality assurance requirements, data requirements, audits and reviews. Refer to MIL-HDBK-263 for how-to information.


MIL-STD-2074 Failure Classification for Reliability Testing

This document establishes criteria for classification of failures occurring during reliability testing. This classification into relevant or nonrelevant categories allows the proper generation of MTBF reports. This document applies to any reliability test, including, but not limited to, tests performed in accordance with MIL-STD-781.


MIL-STD-2155 Failure Reporting, Analysis and Corrective Action System (FRACAS)

This document establishes uniform requirements and criteria for a Failure Reporting, Analysis, and Corrective Action System (FRACAS) to implement the FRACAS requirement of MIL-STD-785.


MIL-STD-2164 Environment Stress Screening Process for Electronic Equipment

This document defines the requirements for ESS of electronic equipment, including environmental test conditions, duration of exposure, procedures, equipment operation, actions taken upon detection of defects, and test documentation. The document provides for a uniform ESS to be utilized for effectively disclosing manufacturing defects in electronic equipment.
 
Top Bottom