Example from a Hardware-based FMEA Machine/Process: Onboard compressed air system Subject: 1.2.2 Compressor control loop Description: Pressure-sensing control loop that automatically starts/stops the compressor based on system pressure (starts at 95 psig and stops at 105 psig) Next higher level: 1.2 Compressor subsystem | | Effects | | | | | | Recommenda- | |---|-------------------------|---|--|---|---|--|--| | Failure Mode | Local | Higher Level | End | Causes | Indications | Safeguards | tions/Remarks | | A No start signal
when the
system
pressure is
low | Open control
circuit | Low pressure and
low air flow in the
system | Interruption of the
systems
supported by
compressed air | Sensor failure or miscalibration Controller failure or incorrect setting Wiring fault Control circuit relay failure Loss of power for the control circuit | Low pressure indicated on air receiver pressure gauge Compressor not operating (but has power and no other obvious failure) | Rapid detection
because of quick
interruption of the
supported
systems | Consider a
redundant
compressor with
separate controls
Calibrate sensors
annually | | B No stop signal
when the | • | • | • | • | • | • | • | | system
pressure is | • | • | • | • | • | • | • | | high | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | | • | | • | | | | | | | • | | • | | • | • | | | # Example from a Function-based FMEA Machine/Process: Onboard compressed air system Subject: 1. Provide compressed air at 100 psig Description: Intake air, compress the air to 100 psig, and distribute the air (without loss) to the manufacturing tool stations or machine Next higher level: Compressed air system | | | Effects | | | | | Recommenda- | |--|----------------------------|------------------------------|--|---|--|--|---| | Failure Mode | Local | Higher Level | End | Causes | Indications | Safeguards | tions/Remarks | | • | • | • | • | • | • | • | • | | • | • | | | • | • | • | | | • | | | • | • | | • | | | B No/inadequate
compressed
air on demand | No air flow or
pressure | No air flow to manufacturing | Interruption of the
systems
supported by
compressed air | No/inadequate intake air No/inadequate air compression No/inadequate containment of compressed air No/inadequate air distribution flow path | Possibly no air pressure at the gauge on the air receiver or at the gauges for the tool stations (unless the flow path is blocked downstream of a gauge) | Rapid detection
of quick
interruption of the
supported
systems | Consider regular monitoring of the pressure differential across the intake air filter Consider checking the rain cap on the air intake annually Consider a redundant compressor | | • | • | • | • | • | • | • | • | | • | | | | • | • | • | | | • | | | • | • | | • | | #### Example of Point Estimate Risk Calculations in an FMEA Machine/Process: Onboard compressed air system Subject: 1.2.2 Compressor control loop Description: Pressure-sensing control loop that automatically starts/stops the compressor based on system pressure (starts at 95 psig and stops at 105 psig) Next higher level: 1.2.2 Compressor subsystem | | Effects | | | | | Risk Pr | ioritizat | ion | | | |---|-------------------------|---|---|---|---|--|----------------|-------|--------|---| | Failure
Mode | Local | Higher
Level | End | Causes | Indications | Safeguards | Frequency | Cost | Risk | Recommenda-
tions/Remarks | | A No start signal when the system pressure is low | Open control
circuit | Low
pressure
and low air
flow in the
system | Interruption
of the
systems
supported
by
compressed
air | Sensor failure or miscalibration Controller failure or incorrect setting Wiring fault Control circuit relay failure Loss of power for the control circuit | Low pressure indicated on air receiver pressure gauge Compressor not operating (but has power and no other obvious failure) | Rapid detection
because of quick
interruption of the
supported
systems | 0.1 <i>l</i> y | \$500 | \$50/y | Consider a redundant compressor with separate controls Calibrate sensors annually | | B No stop
signal | • | • | • | • | • | • | • | • | • | • | | when the | • | • | • | • | • | • | | • | • | • | | pressure
is high | • | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | | • | • | • | | | • | • | • | • | • | • | | • | • | • | | • | • | • | • | • | • | • | • | • | • | | # Example of Risk Categorizations in an FMEA Machine/Process: Onboard compressed air system Subject: 1. Provide compressed air at 100 psig **Description:** Intake air, compress the air to 100 psig, and distribute the air (without loss) to the manufacturing tool stations or machine Next higher level: Compressed air system | | | Effects | | | | | Risk | Prioritizat | tion | | |---|----------------------------|--|---|---|--|--|-----------------------|------------------------------|----------------------|---| | Failure
Mode | Local | Higher
Level | End | Causes | Indications | Safeguards | Frequency
Category | Conse-
quence
Category | Risk Index
Number | Recommenda-
tions/Remarks | | • | • | • | | • | • | • | • | • | | • | | | • | | | • | • | • | • | | | • | | • | • | | | • | • | • | • | • | | • | | B.No/
inadequate
compressed
air on
demand | No air flow
or pressure | No air flow
to air-
operated
valves | Interruption
of the
systems
supported
by
compressed
air | No/inadequate intake air No/inadequate air compression No/inadequate containment of compressed air No/inadequate air distribution flow path | Possibly no air pressure at the gauge on the air receiver or at the gauges for the tool stations (unless the flow path is blocked downstream of a gauge) | Rapid detection of quick interruption of the supported systems | 4 | 2 | 6 | Consider regular monitoring of the pressure differential across the intake air filter Consider checking the rain cap on the air intake annually Consider a redundant compressor | | • | • | • | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | • | | • | | • | • | • | • | • | • | • | • | • | | • | # Example of a Higher Level, Hardware-based FMEA Machine/Process: Onboard compressed air system Subject: 1.2 Compressor subsystem Description: Equipment used to compress the intake air to 100 psig (including the compressor and its control loop, the discharge relief valve, and associated piping) Next higher level: 1. Compression system | | | Effects | | | | | Recommenda- | |--|---|--------------------------|---|--|--|--|--| | Failure Mode | Local | Higher Level | End | Causes | Indications | Safeguards | tions/Remarks | | • | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | | | • | • | | • | • | • | • | | | B Fails to
provide air at
100 psig | No air pressure
and the
compressor not
operating | No air flow/
pressure | Interruption of the systems supported by compressed air | Compressor control loop – no start signal when the system pressure is low Compressor – fails to operate Relief valve – spuriously opens Piping – leak/ rupture | Low pressure
indicated on the
air receiver
pressure gauge | Rapid detection
because of quick
interruption of the
supported
systems | Consider a redundant compressor (diesel powered) with separate controls Calibrate sensors annually Replace the relief valve annually | | • | • | • | • | • | • | • | | | • | • | • | • | • | • | • | | | • | • | | • | • | • | • | | # Example of a Lower Level, Function-based FMEA Machine/Process: Onboard compressed air system Subject: 1.2 Compress air to 100 psig Description: Compress intake air to 95 to 105 psig with enough volume to meet production tool/ machine needs Next higher level: 1. Provide compressed air at 100 psig | | | Effects | | | | | Recommenda- | |---------------------------------------|---------------------------------|---|--|--|---|---|---| | Failure Mode | Local | Higher Level | End | Causes | Indications | Safeguards | tions/Remarks | | A Compressor
starts
prematurely | Unexpected compressor operation | Unexpected air
pressure/flow
Possible high
pressure in the
system | Possible injury (especially during maintenance work) Possible system damage from high pressure | Compressor
control system
sends false signal
Manual override
of compressor
control system | Operating
compressor when
it is supposed to
be stopped | Lockout/fagout of compressor during maintenance Pressure relief valve at the discharge of the compressor for preventing equipment damage | Consider removing the manual override button for the compressor Calibrate pressure sensing switch annually | | B.Compressor
fails to start on | • | • | • | • | • | • | • | | demand | • | • | • | • | • | • | • | | | • | • | • | • | • | • | • | | • | • | • | • | • | • | • | • | | | • | • | • | • | • | • | | | • | • | • | • | • | • | • | • |