Failure Mode and Effects Analysis (FMEA) (rev.4 - 4/16/08) **Project: Incubator Designed for Emerging Areas (iDEA)** Ted Kastenhuber, Bradley H. Morneweck, Bailey Roche, and Christopher Withers Failure Mode Effects Analysis | Function or
Component | Failure Mode | Effect on
System | Possible Hazards | Risk
Index | User Detection Means | Applicable Controls | |---|--|--|---|---------------|---|---| | Regulation: Electrical Thermoregulation Unit | Incomplete/short
circuit, microchip
malfunction | Temperature of
the system
deviates from set
value | Over or underheating of the infant, dehydration; shock from circuit itself | 10 | Monitoring of temperature
shows system is not being
moderated adequately; alarm
sounds | Utilize circuit components with low voltage demands | | Regulation: Electrical Thermosensitive Alarm Unit | Incomplete/short
circuit,
thermistor
malfunction;
battery runs out | Alarm fails in the event of large temperature deviation from set value | Infant remains in an over or under-heated state for an amount of time that is fatal; shock from circuit | 10 | Monitoring of system shows
temperature reads too high or
low and no alarm has sounded | Utilize circuit
components with low
voltage demands;
provide detailed, clear
schematics for repair | | Regulation: Integrated Circuit Thermoregulator | IC burnout | Device will no longer draw a current/regulate | Hypothermia of infant due to heat requirements not being met | 15 | Display will lack visual output, heat will be off | Provide backup
breadboard circuit with
components in place | | Regulation:
Auditory Alarm | Burnout or loss of function | Alarm fails to sound in the event of large deviation from set value | Infant remains in an over or under-heated state for an amount of time that is fatal | 15 | Monitoring of system shows
temperature reads too high or
low and no alarm has sounded | Provide instructions for replacement; recommend regular tests; visual LED alarms | | Support:
Table & Legs | Failure to provide adequate support | Device falls
unexpectedly | Trauma to infant | 12 | Visual observation. | Ensure that device platform is structurally sound, provide warnings for incubator placement | | Incubator: Box/Insulation Component | Insufficient capacity to retain heat; puncture; material toxicity (wood lacquer) | Device is unable
to reach set
temperature
value; vapor fills
chamber | Infant temperature
too low, hypothermia;
infection via vapor | 6 | Alarm sounds. | Warnings and detailed instructions for leak repair; polyurethane used for lacquer. | | Incubator: Doors and Hinges | Unable to easily open | Infant trapped inside of incubator | Asphyxiation, overheating, dehydration of infant | 17 | The door resists opening. | Enable hinges to be
manually detached,
provide warnings for
proper handling of
doors + hinges;
recommend regular tests | | Air Flow: Holes | occlusion | Air ceases to be
able to pass
through device | Oxygen depletion, asphyxiation of infant | 12 | Visual inspection of occlusion, unable to feel air flow placing hand over the hole | Ensure hole diameters are at a value that minimizes both occlusion occurrence and heat loss | |---------------------------------|---|--|---|----|--|---| | Air Flow: Fan | Mechanical
failure, circuit
failure | Air ceases to be pushed through device | Overheating of infant, oxygen depletion, asphyxiation | 14 | Visual or auditory recognition of fan failure | Ensure fan component
is easily replaceable,
provide warnings for
use | | Humidity:
Water Pan | Dry-out | Humidity ceases
to be supplied to
system | Dry-heat causes
excessive water loss
to infant, dehydration | 13 | Visual detection | Regular inspection and changing out of water by caretaker | | Heating: Resistive Heating Coil | Burnout,
improper
connection | Air ceases to be heated | Hypothermia; shock, burns | 9 | Visual recognition or alarm sounds. | Have readily available
back-up; use coil with a
long predicted useful
life. | Table 1. Probability/Severity Matrix | Probability of Occurrence | Severity I
Catastrophic | Severity II
Significant | Severity III
Marginal | Severity IV
Negligible | |---------------------------|----------------------------|----------------------------|--------------------------|---------------------------| | Frequent | 1 | 3 | 7 | 13 | | Probable | 2 | 5 | 9 | 16 | | Occasional | 4 | 6 | 11 | 18 | | Remote | 8 | 10 | 14 | 19 | | Improbable | 12 | 15 | 17 | 20 | Table 2. Risk Acceptance Criteria Matrix | Hazard Risk Index | Acceptance Criteria | |-------------------|--| | 1 to 5 | Unacceptable | | 6 to 9 | Undesirable; written and reviewed decision required to proceed | | 10 to 16 | Acceptable upon completion of quality assurance review | | 17 to20 | Acceptable without review | *Revised 12/3/07 – BMR* Added risk of wood lacquer vapor. Increased severity/significance of the risk of box materials. Revised 12/13/07 – BHM Changed all aspects of design dealing with lighting, and added aspects of design dealing with a resistive heating coil. Revised 2/14/08 – CEW Changed to reflect IC thermoregulator issues, humidity pan Revised 4/16/08 – BMR $Formatting. \ \ Change d\ thermore gulator\ failure\ mode\ to\ reflect\ usage\ of\ microchip\ rather\ than\ thermistor.$