MILITARY HANDBOOK
 RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

To all holders of MIL-HDBK-217F

1. The following pages of MIL-HDBK-217F have been revised and supersede the pages isied.

New Page(s) vil	Date	Superseded Page(s) vii	Date 2 Deoember 1991
5-3		5-3	2 December 1991
5-4		5-4	2 December 1991
5-7		5-7	2 December 1991
5-8	2 December 1991	5-8	Reprinted without change
5-9		5-9	2 December 1991
5-10	2 December 1991	5-10	Reprimed without change
5-11	2 December 1991	5-11	Reprinted without change
5-12		5-12	2 December 1991
5-13		5-13	2 December 1991
5-14	2 December $19 \overline{9} 1$	5-14	Reprinied without chañge
5-19		5-19	2 December 1991
5-20	2 December 1991	5-20	Reprinted without change
6-15		6-15	2 December 1991
6-16	2 December 1991	6-16	Feprinted without change
7-1	2 December 1391	$7=1$	Peprinted without change
7-2		7-2	2 December 1991
12-3		12-3	2 December 1991
12-4	2 December 1991	12-4	Feprinted without change
A-1	2 December 1931	A-1	Reprinted without change
A-2		A-2	2 December 1991
A-3		A-3	2 December 1991
A-4	2 December 1991	A-4	Reprinted without change
A-5		A-5	2 Decemter 1391
A-6		A-6	2 December 1991
A-7		A-7	2 December 1991
A-8		A-8	2 December 1991
A-9		À-9	2 Decomter 1991
A-10	2 December 1991	A-10	Reprinted without change
A-11	2 December 1991	A-11	Reprinted without change
A-12		A-12	2 Decermber 1991
A-13		A-13	2 December 1991
A-14		A-14	2 December 1991
A-15	2 December 1991	A-15	Reprinted without change
A-16		A-16	2 December 1991

AMSC N/A
DISTBIBUTIONSTAIEMENTA: Ápproved íor pubicic releāse; distribution uñlimineá.

MIL-HDBK-217F NOTICE 1

2. Retain the pages of this notice and insert before the Table of Contents.
3. Holders of MIL-HDBK-217F will verify that page changes and additions indicated have been entered. The notice pages will be retained as a check sheet. The issuance, together with appended pages, is a separate priblication. Cach notice is to be retained by stocking points until the military handbook is revised or canceled.

Custodians:
Army - CR
Navy - EC
Air Force-17

Proparing Activity:
Air Force - 17.
Project No. RELI-0068

Review Activities:

Anmy - MI, AV, ER
Navy - SH, AS, OS
Air Force - 11, 13, 14, 15, 18,
19, 99
User Activities:
Army - AT, ME, GL
Navy - CG, MC, YD, TD
Air Force - 85

MIL-HDBK-217F NOTICE 1

MIL-HDBK-217F, Notice 1 is issued to correct minor typographical errors in the basic F Revision. MIL-HDBK-217F (base document) provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

1. New failure rate prediction models are provided for the following nine major classes of microcircuits:

- Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
- Monolithic MOS Digital and Linear Gate/Logic Array Devices
- Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
- Monolithic Bipolar and MOS Memory Devices
- Monolithic GaAs Digital Devices
- Monolithic GaAs MMIC Devices
- Hybrid Microcircuits
- Magnetic Bubble Memories
- Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000, linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The $C_{\text {, }}$ factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_{T}) have been changed for MOS devices and for memories. The C_{2} factor remains unchanged from the previous Handbook version, but includes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New values have been included for the quality factor (π_{Q}), the learning factor (π_{L}), and the environmental factor (π_{E}). The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect fallure rate contributions, and to provide a method of calculating chip junction temperatures.
2. A new model for Very High Speed Integrated Circuits (VHSICNHSIC Like) and Very Large Scale integration (VLSI) devices (gate counts above 60,000).
3. The reformatting of the entire handbook to make it easier to use.
4. A reduction in the number of environmental factors $\left(\pi_{E}\right)$ from 27 to 14.
5. A revised fallure rate model for Network Resistors.
6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

DESCRIPTION

1. Bipolar Devices, Digital and Linear Gate/Logic Arrays
2. MOS Devices, Digital and Linear Gate/Logic Arrays
3. Field Programmable Logic Array (PLA) and

Programmable Array Logic (PAL)
4. Microprocessors

$$
\lambda_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \text { Failures } / 10^{6} \text { Hours }
$$

Bipolar Digital and Linear Gate/Logic Array Die Complexity Faikure Rate - C_{1}

Digital		Linear			PLAPAL	
No. Gates	C_{1}	No. Tran	sistors	C_{1}	No. Gates	C_{1}
1 to 100	. 0025	1 to	100	. 010	Up to 200	. 010
101 to 1,000	. 0050	101 to	300	. 020	201 to 1,000	. 021
1,001 to 3,000	. 010	30110	1,000	. 040	1,001 to 5,000	. 042
3,001 to 10,000	. 020	1,001 to	10,000	. 060		
10,001 to 30,000	. 040					
30,001 to 60,000	. 080					

MOS Digital and Linear Gate/Logic Array Die Complexity Failure Rate - C1 ${ }_{1}$

Digital				Linear				PLAPAL	
No. Gates			C_{1}	No.	Tran	sistors	C_{1}	No. Gates	C_{1}
1	10	100	. 010	1	10	100	. 010	Up to 500	. 00085
101	to	1,000	. 020	101	to	300	. 020	501 to 2,000	. 0017
1.001	to	3,000	. 040	301	to	1,000	. 040	2,001 to 5,000	. 0034
3,001	to	10,000	. 080	1,001		10,000	. 060	5,001 to 20,000	. 0068
10,001	to	30,000	. 16						
30,001	to	60,000	. 29						

*NOTE: For CMOS gate counts above 60,000 use the VHSIC/VHSIC-Like model in Section 5.3

Microprocessor
Die Complexky Fallure Rate - C_{1}

No. Bits	Bipolar	MOS
	C_{1}	C_{1}
Up to 16	.060	.14
Up to 32	.12	.28

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
C_{2}	Section 5.9
$\pi_{\mathrm{E}}, \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$	Section 5.10

MIL-HDBK-217F
 NOTICE 1

5.2 MICROCIRCUITS, MEMORIES

DESCRIPTION

1. Read Only Memories (ROM)
2. Programmable Read Only Memories (PROM)
3. Utraviolet Eraseable PROMs (UVEPROM)
4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
5. Static Random Access Memories (SRAM)
6. Dynamic Random Access Memories (DRAM)

$$
\lambda_{D}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}+\lambda_{c y c}\right) \pi_{Q} \pi_{L} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Die Complexhy Fallure Rate $-\mathrm{C}_{1}$

Memory Size, B (Bits)	MOS				Bipolar	
	ROM	PROM, UVEPROM, EEPROM, EAPROM	DRAM	$\begin{gathered} \text { SRAM } \\ \text { (MOS \& } \\ \text { BiCMOS) } \end{gathered}$	ROM, PROM	SRAM
Up to 16K	. 00065	. 00085	. 0013	. 0078	. 0094	. 0052
16K < B $\leq 64 \mathrm{~K}$. 0013	. 0017	. 0025	. 016	. 019	. 011
$64 \mathrm{~K}<\mathrm{B} \leq 256 \mathrm{~K}$. 0026	. 0034	. 0050	. 031	. 038	. 021
$256 \mathrm{~K}<\mathrm{B} \leq 1 \mathrm{M}$. 0052	. 0068	. 010	. 062	. 075	. 042

A $_{1}$ Factor for $\lambda_{\text {cyc }}$ Calculation		
Total No. of Programming Cycles Over EEPROM Life, C Flotox	Textured- Poly 2	
Up to 100	.00070	.0097
$100<C \leq 200$.0014	.014
$200<C \leq 500$.0034	.023
$500<C \leq 1 K$.0068	.033
$1 K<C \leq 3 K$.020	.061
$3 K<C \leq 7 K$.049	.14
$7 K<C \leq 15 K$.10	.30
$15 K<C \leq 20 K$.14	.30
$20 K<C \leq 30 K$.20	.30
$30 K<C \leq 100 K$.68	.30
$100 K<C \leq 200 K$	1.3	.30
$200 K<C \leq 400 K$	2.7	.30
$400 K<C \leq 500 K$	3.4	.30

1. $A_{1}=6.817 \times 10^{-6}(C)$
2. No undertying equation for TexturedPoly.

Total No. of Programming Cycles Over EEPROM Life, C	Textured-Poly A_{2}
Up to 300 K	0
$300 \mathrm{~K}<C \leq 400 \mathrm{~K}$	1.1
$400 \mathrm{~K}<C \leq 500 \mathrm{~K}$	2.3

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
C_{2}	Section 5.9
$\pi_{E}, \pi_{Q}, \pi_{L}$	Section 5.10
$\lambda_{\text {cyc }}$ (EEPROMS only)	Page 5-5
$\lambda_{\text {cyc }}=0 \quad$ For all other devices	

DESCRIPTION

CMOS greater than 60:000 gates

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{BD}} \pi_{M \mathrm{MFG}} \pi_{\mathrm{T}} \pi_{\mathrm{CD}}+\lambda_{\mathrm{BP}} \pi_{\mathrm{E}} \pi_{\mathrm{Q}} \pi_{\mathrm{PT}}+\lambda_{\mathrm{EOS}} \text { Failures/ } 10^{6} \text { Hours }
$$

Die Base Failure Rate $-\lambda_{\mathrm{BD}}$

Pant Type	λ_{BD}
Logic and Custom	0.16
Gate Array and Memory	0.24

Manufacturing Process Correction Factor - $\pi_{\text {MFG }}$

Manufacturing Process	$\pi_{\text {MFG }}$
QML or QPL	.55
Non QML or Non QPL	2.0

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
$\pi_{\mathrm{E}}, \pi_{\mathrm{O}}$	Section 5.10

Package Type Correction Factor $-\pi_{\text {PT }}$

	$\pi_{\text {PT }}$	
Package Type	Hermetic	Nonhermetic
DIP	1.0	1.3
Pin Grid Array	2.2	2.9
Chip Carrier	4.7	6.1
(Surface Mount		
Technology)		

Die Complexity Correction Factor - $\pi_{C D}$

Featurio Stzo (Microns)	A $\leq .4$. $4<A \leq .7$	$\begin{gathered} \text { Die Area }\left(\mathrm{cm}^{2}\right) \\ .7<A \leq 1.0 \end{gathered}$	$1.0<4 \leq 2.0$	$2.0<A \leq 3.0$
. 80	8.0	14	19	38	58
1.00	5.2	8.9	13	25	37
1.25	3.5	5.8	8.2	16	24
${ }^{\pi_{C D}}=\left(\left(\frac{A}{.24}\right)\left(\frac{2}{X_{s}}\right)^{2}(.64)\right)+.36 \quad A=$ Total Scribed Chip Die Area in $\mathrm{cm}^{2} \quad X_{s}=$ Feature Size (microns) Die Area Conversion: $\mathrm{cm}^{2}=\mathrm{MIL}^{2} \div 155,000$					

Package Base Failure Rate - λ_{BP}

Number oi Pins	λ_{BP}
24	.0026
28	.0027
40	.0029
44	.0030
48	.0030
52	.0031
64	.0033
84	.0036
120	.043
124	.0043
144	.0047
220	
$\lambda_{\mathrm{BP}}=.0022+\left(\left(1.72 \times 10^{-5}\right)(\mathrm{NP})\right)$	
$\mathrm{NP}=$	Number of Package Pins

Electrical Overstress Failure Rate - $\lambda_{E O S}$

$V_{\text {TH }}$ (ESD Susceptibility (Voits)) ${ }^{\text {a }}$	$\lambda_{\text {EOS }}$
0-1000	. 065
> 1000-2000	. 053
> 2000-4000	. 044
> 4000-16000	. 029
>16000	. 0027
$\lambda_{\text {EOS }}=\left(-\ln \left(1-.00057\right.\right.$ expl $\left.-.0002 V_{\text {TH }}\right)$) 100876	
$V_{T H}=$ ESD Susceptibility (volts)	
- Voltage ranges which will cause the part to fail. If unknown, use $0-1000$ volts.	

MIL-HDBK-217F

5.4 MICROCIRCUITS, GaAs MMIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circuits using MESFET Transistors and Gold Based Metallization

$$
\lambda_{P}=\left[C_{1} \pi_{T} \pi_{A}+C_{2} \pi_{E}\right] \pi_{L} \pi_{Q} \text { Failures/106 Hours }
$$

MMIC: Die Complexity Faikure Rates - C_{1}
Complexity (No. of Elements) C_{1} 1 to 100 4.5 101 to 1000 7.2

1. C_{1} accounts for the following active elements: transistors, diodes.

Digital: Die Complexity Failure Rates - C_{1}

Complexity (No. of Elements)	C_{1}
1 to 1000	25
1,001 to 10,000	51

1. C_{1} accounts for the following active elements: transistors, diodes.
Device Application Factor - π_{A}

Application	π_{A}
MMIC Devices	
Low Noise \& Low Power ($\leq 100 \mathrm{~mW}$)	1.0
Driver \& High Power (> 100 mW)	3.0
Unknown	3.0
Digital Devices	
All Digital Applications	1.0

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
C_{2}	Section 5.9
$\pi_{E}, \pi_{L}, \pi_{\mathrm{O}}$	Section 5.10

DESCRIPTION

Hybrid Microcircuits

$$
\lambda_{P}=\left(\Sigma N_{C} \lambda_{C}\right)\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{Q} \pi_{L} \text { Failures } / 10^{6} \text { Hours }
$$

$N_{c}=$ Number of Each Particular Component
$\lambda_{c}=$ Failure Rate of Each Particular Component

The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modified to account for the overall hybrid function (π_{F}), screening level (π_{a}), and maturity (π_{L}). The hybrid package failure rate is a function of the active component failure modified by the environmental factor (i.e., ($1+.2$ π_{E})). Onty the componert types tisted in the following table are considered to contribute significantly to
the overall failure rate of most hybrids. All other component types (e.g.. resistors, inductors, etc.) are considered to contribute insignificantly to the overall hybrid failure rate, and are assumed to have a failure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be calculated for these devices. If factoring in other component types, assume $\pi_{Q}=1, \pi_{E}=1$ and $T_{A}=$ Hybrid Case Temperature for these calculations.

Determination of λ_{c}

Determine λ_{c} for These Component Types	Handbook Section	Make These Assumptions When Determining λ_{C}
Microcircults	5	$C_{2}=0, \pi_{Q}=1, \pi_{L}=1, T_{J}$ as Determined from Section $5.12, \lambda_{B P}=0$ (for VHSIC), $\pi_{E}=1$ (for SAW). Discrete Semiconductors Capacitors$\quad 6$
$\pi_{Q}=1, T_{J}$ as Determined from Section 6.14, $\pi_{E}=1$. $\pi_{Q}=1, T_{A}=$ Hybrid Case Temperature, $\pi_{E}=1$.		

NOTE: If maximum rated stress for a die is unknown, assume the same as for a discretely package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconductors.

Circult Function Factor - π_{F}

Circuit Type	π_{F}
Digital	1.0
Video, $10 \mathrm{MHz}<\mathrm{f}<1 \mathrm{GHz}$	1.2
Microwave, $\mathrm{f}>1 \mathrm{GHz}$	2.6
Linear, $\mathrm{f}<10 \mathrm{MHz}$	5.8
Power	21

All Other Hybrid Model Parameters

$\pi_{L}, \pi_{Q}, \pi_{E}$	Refer to Section 5.10

DESCRIPTION

Surface Acoustic Wave Devices

$$
\lambda_{P}=2.1 \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Quality Factor $-\pi_{\mathrm{Q}}$
Screening Levei π_{Q} 10 Temperature Cycles $\left(-55^{\circ} \mathrm{C}\right.$ to ＋125 tests at temperature extremes． .10 None beyond best commerical practices． 1.0

Environmental Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	.5
G_{F}	2.0
G_{M}	4.0
$\mathrm{~N}_{\mathrm{S}}$	4.0
$\mathrm{~N}_{\mathrm{U}}$	6.0
$\mathrm{~A}_{\mathrm{K}}$	4.0
$\mathrm{~A}_{\mathrm{IF}}$	5.0
$\mathrm{~A}_{\mathrm{UC}}$	5.0
$\mathrm{~A}_{\mathrm{UF}}$	8.0
$\mathrm{~A}_{\mathrm{RW}}$	8.0
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	5.0
M_{L}	12
C_{L}	220

MIL-HDBK-217F

5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
2. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the fallure rate model is:

$$
\lambda_{p}=\lambda_{1}+\lambda_{2} \text { Failures } / 10^{6} \text { Hours }
$$

where:
$\lambda_{1}=$ Failure Rate of the Control and Detection Structure
$\lambda_{1}=\pi_{Q}\left[N_{C} C_{11} \pi_{T_{1}} \pi_{W}+\left(N_{C} C_{21}+C_{2}\right) \pi_{E}\right] \pi_{D} \pi_{L}$
$\lambda_{2}=$ Failure Rate of the Memory Storage Area
$\lambda_{2}=\pi_{Q} N_{C}\left(C_{12} \pi_{T 2}+C_{22} \pi_{E}\right) \pi_{L}$

Chips Per Package - N_{C}
$N_{C}=$ Number of Bubble Chips per Packaged Device

Temperature Factor $-\pi_{T}$
$\pi_{T}=(.1) \exp \left[\frac{-E a}{8.63 \times 10^{-5}}\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right]$
Use:
$E_{a}=.8$ to Calculate $\pi_{T 1}$
$\mathrm{E}_{\mathrm{a}}=.55$ to Calculate $\pi_{T 2}$
$T_{J}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$, $25 \leq T_{J} \leq 175$
$T_{J}=T_{\text {CASE }}+10^{\circ} \mathrm{C}$

Device Complexity Failure Rates for Control and Detection Structure - C_{11} and C_{21}

$$
\begin{aligned}
C_{11}= & .00095\left(N_{1}\right) \cdot 40 \\
C_{21}= & .0004\left(N_{1}\right) \cdot 226 \\
N_{1}= & \begin{array}{l}
\text { Number of Dissipative Elements } \\
\text { on a Chip (gates, detectors, } \\
\text { generators, etc.), } N_{1} \leq 1000
\end{array}
\end{aligned}
$$

MIL-HDBK-217F NOTICE 1

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

Device Complexity Failure Rates for Memory Storage Structure $-\mathrm{C}_{12}$ and C_{22}
$C_{12}=.00007\left(N_{2}\right)^{3}$
$C_{22}=.00001\left(N_{2}\right)^{.3}$
$N_{2}=$ Number of Bits, $N_{2} \leq 9 \times 10^{6}$

All Other Model Parameters

Parameter	Section
C_{2}	5.9
$\pi_{E}, \pi_{Q}, \pi_{L}$	5.10

Temperature Factor For All Microcircuits - π r

	\pm	웅ㅇㅇㅇㅇ
$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{2} \\ & \frac{0}{2} \end{aligned}$	$\stackrel{\sim}{\square}$	8 8 8\%
	0	
	$\stackrel{0}{0}$	
$\begin{aligned} & \underline{\underline{\mathbf{n}}} \\ & \underline{\underline{玉}} \end{aligned}$	\bigcirc	
	-	

5.9 MICROCIRCUITS, C_{2} TABLE FOR ALL

Package Failure Rate for all Microcircuits - C_{2}

Package Type					
Number of Functional Pins, N_{p}	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ${ }^{1}$, SMT (Leaded and Nonleaded)	DIPs whth Glass Seal ${ }^{2}$	Flatpacks with Axial Leads on 50 Mil Centers ${ }^{3}$	Cans ${ }^{4}$	Nonhermetic: DIPs, PGA. SMT (Leaded and Nonleaded) ${ }^{5}$
3	. 00092	. 00047	. 00022	. 00027	0012
4	. 0013	. 00073	. 00037	. 00049	. 0016
6	. 0019	. 0013	. 00078	. 0011	. 0025
8	. 0026	. 0021	. 0013	. 0020	. 0034
10	. 0034	. 0029	. 0020	. 0031	. 0043
12	. 0041	. 0038	. 0028	. 0044	. 0053
14	. 0048	. 0048	. 0037	. 0060	. 0062
16	. 0056	. 0059	. 0047	. 0079	. 0072
18	. 0064	. 0071	. 0058		. 0082
22	. 0079	. 0096	. 0083		. 010
24	. 0087	. 011	. 0098		. 011
28	. 010	. 014			. 013
36	. 013	. 020			. 017
40	. 015	. 024			. 019
64	. 025	. 048			. 032
80	. 032				. 041
128	. 053				. 068
180	. 076				. 098
224	. 097				. 12

1. $C_{2}=2.8 \times 10^{-4}\left(N_{p}\right)^{1.08}$
2. $C_{2}=3.0 \times 10^{-5}\left(N_{p}\right)^{1.82}$
3. $C_{2}=3.6 \times 10^{-4}\left(N_{p}\right)^{1.08}$

NOTES:

1. SMT: Surface Mount Technology
2. DIP: Dual In-Line Package
3. H DIP Sead type is unknown, assume gtass
4. The package fallure rate $\left(C_{2}\right)$ accounts for faikures associated only with the package inself.

Fallures assoclated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies.

5.12 MICROCIRCUITS, T_{J} DETERMINATION, (FOR HYBRIDS)

Typical Hybrid Characteristics

Material	Typical Usage	Typical Thickness, L_{i} (m.)	Feature From Figure 5-1	$\begin{gathered} \text { Thermal } \\ \text { Conductivity, } \\ \mathrm{K}_{\mathrm{i}} \\ \left(\frac{\mathrm{~W} / \mathrm{in}^{2}}{{ }^{\circ} \mathrm{C} / \mathrm{in}}\right) \end{gathered}$	$\begin{gathered} \left(\frac{1}{K_{i}}\right)\left(L_{i}\right) \\ \left(i^{2}{ }^{\circ} \mathrm{C} / \mathrm{w}\right) \end{gathered}$
Silicon	Chip Device	0.010	A	2.20	. 0045
GaAs	Chip Device	0.0070	A	. 76	. 0092
Au Eutectic	Chip Attach	0.0001	B	6.9	. 000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	. 0023
Epoxy (Dielectric)	Chip/Substrate Attach	0.0035	B/E	. 0060	. 58
Epoxy (Conductive)	Chip Attach	0.0035	B	. 15	. 023
Thick Fitm Dielectric	Glass Insulating Layer	0.0030	C	. 66	. 0045
Alumina	Substrate, MHP	0.025	D	. 64	. 039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	. 0038
Kovar	Case, MHP	0.020	F	. 42	. 048
Aluminum	Case, MHP	0.020	F	4.6	. 0043
Copper	Case, PHP	0.020	F	9.9	. 0020

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: $\geq 2 \mathrm{~W}$, Typically)

$$
\theta_{J C}=\frac{\sum_{i=1}^{n}\left(\frac{1}{K_{i}}\right)\left(L_{i}\right)}{A}
$$

$n=$ Number of Material Layers
$K_{i}=$ Thermal Conductivity of $i^{\text {th }}$ Material $\left(\frac{W / i^{2}}{{ }^{2} / / \mathrm{n}}\right)$ (User Provided or From Table)
$L_{1} \quad$ - Thickness of ith Material (in) (User Provided or From Table)
A = Die Area (in ${ }^{2}$). If Die Area cannot be readily determined, estimate as fotlows: $A=[.00278 \text { (No. of Die Active Wire Terminals) }+.0417]^{2}$

Estimate T_{J} as Follows:

$$
T_{J}=T_{C}+\left(\theta_{J C}\right)\left(P_{D}\right)
$$

$T_{C}=$ Hybrid Case Temperature $\left({ }^{\circ} \mathrm{C}\right)$. H unknown, use the T_{C} Default Table shown in Section 5.11.
$\theta_{\mathrm{JC}}=$ Junction-to-Case Thermal Resistance (${ }^{\circ} \mathrm{CM}$) (As determined above)
$P_{D}=$ Die Power Dissipation (W)

Example 1: CMOS Digital Gate Array

Given: A CMOS digital timing chip (4046) in an airbome inhabited cargo application, case temperature $48^{\circ} \mathrm{C}, 75 \mathrm{~mW}$ power dissipation. The device is procured with normal manufacturer's screening consisting of temperature cycling, constant acceleration, electrical testing, seal test and extemal visual inspection, in the sequence given. The component manufacturer atso performs a B-level burn-in followed by electrical testing. All screens and tests are performed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$
\lambda_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.1
$$

Example 2: EEPROM

Given: A 128 K Fiotox EEPROM that is expected to have a T_{J} of $80^{\circ} \mathrm{C}$ and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. His packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$
\pi_{P}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}+\lambda_{\text {cyc }}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.2
$$

| $C_{1}=.0034$ | Section 5.2 |
| :--- | :--- | :--- |
| $\pi_{T}=3.8$ | Section 5.8 |
| $C_{2}=.014$ | Section 5.9 |

MIL-HDBK-217F NOTICE 1

6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

Matching Network Factor $-\pi_{M}$

Matching	π_{M}
Input and Output	1.0
Input Only	2.0
None	4.0

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	5.0
N_{S}	4.0
N_{U}	11
$A_{K_{C}}$	4.0
$A_{I F}$	5.0
$A_{U C}$	7.0
$A_{U F}$	12
$A_{R W}$	16
S_{F}	.50
M_{F}	9.0
M_{L}	24
C_{L}	250

MIL-HDBK-217F

6.9 TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION

MIL-S-19500

DESCRIPTION

Si FETs (Avg. Power < 300 mW . Freq. > 400 MHz)

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Base Faikure Rate $-\lambda_{\mathrm{b}}$	
Transistor Type λ_{b} MOSFET .060 JFET .023	

$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	${ }_{T}$	$\left.\mathrm{T}_{3}{ }^{\circ} \mathrm{C}\right)$	π_{T}
25	1.0	105	3.9
30	1.1	110	4.2
35	1.2	115	4.5
40	1.4	120	4.8
45	1.5	125	5.1
50	1.6	130	5.4
55	1.8	135	5.7
60	2.0	140	6.0
65	2.1	145	6.4
70	2.3	150	6.7
75	2.5	155	7.1
80	2.7	160	7.5
85	3.0	165	7.9
90	3.2	170	8.3
95	3.4	175	8.7
100	3.7		
$\pi_{T}=\exp \left(-1925\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$			
$T_{J}=$ Junction Tomperature (${ }^{\circ} \mathrm{C}$)			

Quality Factor - π_{Q}	
Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	5.0
N_{S}	4.0
N_{U}	11
$A_{I C}$	4.0
$A_{I F}$	5.0
$A_{U C}$	7.0
$A_{U F}$	12
$A_{R W}$	16
s_{F}	.50
M_{F}	24.0
M_{L}	250

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

$$
\lambda_{p}=\lambda_{b} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{b}

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

Alternate* Base Failure Rate for Putsed Klystrons - λ_{6}

P(MW	.2	.4	.6	.8	1.0	2.0	4.0	6.0
.01	16	16	16	16	16	16	16	16
.30	16	16	17	17	17	18	20	21
.80	16	17	17	18	18	21	25	30
1.0	17	17	18	18	19	22	28	34
3.0	18	20	21	23	25	34	51	
5.0	19	22	25	28	31	45	75	
8.0	21	25	30	35	40	63	110	
10	22	28	34	40	45	75		
25	31	45	60	75	90	160		

$\lambda_{B}=2.94(F)(P)+16$
$F=$ Operating Frequency in $\mathrm{GHz}, 0.2 \leq F \leq 6$
$P=P e a k$ Output Power in MW, . $01 \leq P \leq 25$ and $P \leq 490 F^{-2.95}$
-See previous page for other Klystron Base Failure Rates.

Alternate* Base Failure Rate for CW Klystrons - λ_{b}

P(KW)	300	500	800	1000	$F(M H z)$	2000	4000	6000

0.1	30	31	33	34	38	47	57	66
1.0	31	32	33	34	39	48	57	66
3.0	32	33	34	35	40	49	58	
5.0	33	34	35	36	41	50		
8.0	34	35	37	38	42			
10	35	36	38	39	43			
30	45	46	48	49				
50	55	56	58	59				
80	70	71	73					
100	80	81						

$\lambda_{b}=0.5 P+.0046 F+29$
$P=$ Average Output Power in KW, $0.1 \leq P \leq 100$ and $P \leq 8.0(10)^{6}(F)^{-1.7}$
$F=$ Operating Frequency in MHz . $300 \leq F \leq 8000$

-See previous page for other Klystron Base Failure Rates.

Leaming Factor $-\pi_{L}$			
T (years)	π_{L}		
≤ 1	10		
2	2.3		
≥ 3	1.0		
π_{L}	$=10(T)^{-2.1}, 1 \leq T \leq 3$		
	$=10, T \leq 1$		
T	$=1 . T \geq 3$	\quad	Number of Years since Introduction
:---			
to Field Use			

Environment Factor $-\pi_{E}$

Environment	π_{E}
G_{8}	. 50
G_{F}	1.0
G_{M}	14
N_{S}	8.0
N_{U}	24
$A_{1 C}$	5.0
$A_{\text {IF }}$	8.0
${ }^{\text {A }}$ UC	6.0
$A_{\text {UF }}$	12
$A_{\text {RW }}$	40
S_{F}	. 20
M_{F}	22
M_{L}	57
C_{L}	1000

MIL-HDBK-217F NOTICE 1

12.2 ROTATING DEVICES, SYNCHROS AND RESOLVERS

DESCRIPTION

Rotating Synchros and Resolvers

$$
\lambda_{p}=\lambda_{b} \pi_{S} \pi_{N} \pi_{E} \text { Failures/10 Hours }
$$

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

MIL-HDBK-217F

12.3 ROTATING DEVICES, ELAPSED TIME METERS

DESCRIPTION Elapsed Time Meters

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$	
Type λ_{b} A.C. 20 Inverter Driven 30 Commutator D.C. 80	

Environment Factor $-\pi_{E}$

Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	12
N_{S}	7.0
N_{U}	18
A_{K}	5.0
$A_{I F}$	8.0
$A_{U C}$	16
$A_{U F}$	25
$A_{R W}$	26
S_{F}	.50
M_{F}	14
M_{L}	38
C_{L}	N / A

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Count Rellabllity Prediction - This prediction method is applicable during bid proposal and earty design phases when insufficient information is available to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic pant types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment taiture rate is obtained by looking up a generic failure rate in one of the following tables, multiplying it by a quality factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment failure rate with this method is:

$$
\lambda_{\text {EQUIP }}=\sum_{i=1}^{i=n} N_{i}\left(\lambda_{g} \pi_{0}\right)_{i} \quad \text { Equation } 1
$$

for a given equipment environment where:

$\lambda_{\text {EQUIP }}$	$=$ Total equipment fallure rate (Failures/ 10^{6} Hours)
λ_{g}	$=$ Generic failure rate for the $i^{\text {th }}$ generic part (Failures $/ 10^{6}$ Hours)
π_{Q}	$=$ Quality factor for the $i^{\text {th }}$ generic part
N_{i}	$=$ Quantity of $i^{\text {th }}$ generic part
n	$=$ Number of different generic part categories in the equipment

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited $\left(A_{1}\right)$ and uninhabited (A_{U}) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_{g} tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_{L}, which accounts for the maturity of the manufacturing process. For devices in production two years or more, no moditication is needed. For those in production less than two years, λ_{g} should be multiplied by the appropriate in factor (See page A-4).

It should be noted that no generic falure rates are shown for hybrid microchrcults. Each hybrid is a faily unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Ldentically or similarly named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. If hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The fallure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The specitic defaul values used for the model parameters are shown with the λ_{g} Tables for microcircuits. Defaull parameters for all other pan classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

MIL-HDBK-217F NOTICE 1

APPENDIX A: PARTS COUNT

$\begin{gathered} \text { Section } \\ \\ \hline \end{gathered}$	Paritype	$\begin{aligned} & \text { Enmion. } \rightarrow \\ & T_{J}(C) \rightarrow \\ & \hline \end{aligned}$	$\begin{aligned} & G_{8} \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & G_{F} \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & G_{M} \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}_{\mathrm{S}} \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & N_{u} \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & A_{1 C} \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & A_{\text {IF }} \\ & 75 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{A}_{\text {UC }} \\ 90 \\ \hline \end{gathered}$	$\begin{aligned} & A_{1 F} \\ & 90 \\ & \hline \end{aligned}$	$\begin{gathered} A_{\text {RW }} \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & S_{F} \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TF } \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & M_{L} \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & C_{L} \\ & -60 \\ & \hline \end{aligned}$
5.1			$\begin{aligned} & .0036 \\ & .0060 \\ & .011 \\ & .033 \\ & .052 \\ & .075 \end{aligned}$	$\begin{aligned} & .012 \\ & .020 \\ & .035 \\ & .12 \\ & .17 \\ & .23 \\ & \hline \end{aligned}$	$\begin{aligned} & .024 \\ & .038 \\ & .066 \\ & .22 \\ & .33 \\ & .44 \\ & \hline \end{aligned}$	$\begin{aligned} & .024 \\ & .037 \\ & .085 \\ & .22 \\ & .33 \\ & .43 \\ & \hline \end{aligned}$	$\begin{aligned} & .035 \\ & .055 \\ & .097 \\ & .33 \\ & .48 \\ & .83 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .039 \\ & .070 \\ & .23 \\ & .34 \\ & .46 \\ & \hline \end{aligned}$	$\begin{aligned} & .030 \\ & .48 \\ & .085 \\ & .28 \\ & .42 \\ & .58 \\ & \hline \end{aligned}$	$\begin{aligned} & .032 \\ & .051 \\ & .091 \\ & .30 \\ & .45 \\ & .81 \\ & \hline \end{aligned}$.049 .077 .14 .46 .68 .90	$\begin{aligned} & .047 \\ & .074 \\ & .13 \\ & .44 \\ & .65 \\ & \hline \end{aligned}$	$\begin{aligned} & .0038 \\ & .0060 \\ & .011 \\ & .033 \\ & .052 \\ & .075 \\ & \hline \end{aligned}$.030 .048 .082 .28 .41 .53	$\begin{gathered} .069 \\ .11 \\ .19 \\ .65 \\ .95 \\ 1.2 \\ \hline \end{gathered}$	$\begin{array}{r} 1.2 \\ 1.9 \\ 3.3 \\ 12 \\ 17 \\ 21 \\ \hline \end{array}$
5.1	 1-100 Trercivivir 101 - 320 Tranadetors 301 - 4000 Tremiliotions 1001 - 10.000 Tranderars	(14 Pn DPP) (18 Pin DP') (24 Pin DP (40 Pin DP	$\begin{aligned} & .0095 \\ & .017 \\ & .003 \\ & .050 \\ & \hline \end{aligned}$	$\begin{aligned} & .024 \\ & .041 \\ & .074 \\ & .12 \\ & \hline \end{aligned}$	$\begin{aligned} & .039 \\ & .085 \\ & .11 \\ & .18 \\ & \hline \end{aligned}$	$\begin{aligned} & .051 \\ & .051 \\ & .092 \\ & .15 \\ & \hline \end{aligned}$	$\begin{array}{r} .049 \\ .078 \\ .13 \\ .21 \\ \hline \end{array}$	$\begin{array}{r} .057 \\ .10 \\ .19 \\ .29 \\ \hline \end{array}$	$\begin{aligned} & .062 \\ & .11 \\ & .19 \\ & .30 \\ & \hline \end{aligned}$	$\begin{array}{r} .12 \\ .22 \\ .41 \\ .63 \\ \hline \end{array}$	$\begin{array}{r} .13 \\ .24 \\ .44 \\ .67 \\ \hline \end{array}$	$\begin{aligned} & .076 \\ & .13 \\ & .32 \\ & .35 \\ & \hline \end{aligned}$	$\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & .050 \\ & \hline \end{aligned}$	$\begin{aligned} & .044 \\ & .072 \\ & .12 \\ & .18 \\ & \hline \end{aligned}$.098 .15 .28 .41	$\begin{aligned} & 1.1 \\ & 1.4 \\ & 2.0 \\ & 3.4 \\ & \hline \end{aligned}$
5.1			$\begin{aligned} & .0061 \\ & .011 \\ & .022 \\ & \hline \end{aligned}$	$\begin{array}{r} .010 \\ .020 \\ .055 \end{array}$	$\begin{aligned} & .029 \\ & .048 \\ & .087 \end{aligned}$	$\begin{aligned} & .027 \\ & .0415 \\ & .002 \\ & \hline \end{aligned}$	$\begin{aligned} & .040 \\ & .065 \\ & .12 \\ & \hline \end{aligned}$	$\begin{array}{r} .032 \\ .054 \\ .099 \\ \hline \end{array}$	$\begin{array}{r} .037 \\ .063 \\ .11 \\ \hline \end{array}$	$\begin{aligned} & .044 \\ & .077 \\ & .14 \\ & \hline \end{aligned}$	$\begin{aligned} & .061 \\ & .10 \\ & .19 \\ & \hline \end{aligned}$	$\begin{array}{r} .054 \\ .089 \\ .16 \\ \hline \end{array}$	$\begin{array}{r} .0081 \\ .011 \\ .022 \\ \hline \end{array}$	$\begin{array}{r} .034 \\ .057 \\ .10 \\ \hline \end{array}$	$\begin{aligned} & .076 \\ & .12 \\ & .22 \\ & \hline \end{aligned}$	1.2 1.9 3.3
5.1		(16 PM DPP) (24 Pm DP ${ }^{2}$) (40 Pm DPP) (12: Pin PaA) (180 Pm PGA) (224 Pin PGA)	.0057 .010 .019 .048 .084 .13	$\begin{aligned} & .015 \\ & .028 \\ & .047 \\ & .14 \\ & .22 \\ & .31 \\ & \hline \end{aligned}$	$\begin{aligned} & .027 \\ & .045 \\ & .080 \\ & .25 \\ & .38 \\ & .53 \\ & \hline \end{aligned}$	$\begin{aligned} & .027 \\ & .043 \\ & .077 \\ & .24 \\ & .37 \\ & .51 \\ & \hline \end{aligned}$	$\begin{aligned} & .039 \\ & .082 \\ & .11 \\ & .38 \\ & .54 \\ & .73 \\ & \hline \end{aligned}$	$\begin{aligned} & .029 \\ & .049 \\ & .088 \\ & .27 \\ & .42 \\ & .59 \\ & \hline \end{aligned}$	$\begin{aligned} & .035 \\ & .057 \\ & .10 \\ & .32 \\ & .49 \\ & .69 \\ & \hline \end{aligned}$	$\begin{aligned} & .030 \\ & .018 \\ & .18 \\ & .38 \\ & .82 \\ & .82 \\ & \hline \end{aligned}$.056 .092 .17 .71 .79	$\begin{aligned} & .052 \\ & .033 \\ & .15 \\ & .48 \\ & .72 \\ & .98 \\ & \hline \end{aligned}$	$\begin{aligned} & .0057 \\ & .010 \\ & .019 \\ & .049 \\ & .084 \\ & .13 \\ & \hline \end{aligned}$	$\begin{aligned} & .033 \\ & .053 \\ & .095 \\ & .30 \\ & .46 \\ & .63 \\ & \hline \end{aligned}$	$\begin{array}{r} .074 \\ .12 \\ .21 \\ .89 \\ 1.0 \\ 1.4 \\ \hline \end{array}$	$\begin{array}{r} 1.2 \\ 1.9 \\ 3.3 \\ 12 \\ 17 \\ 21 \\ \hline \end{array}$
5.1	\qquad		.0095 .017 .033	$\begin{array}{r} .024 \\ .041 \\ .074 \\ .12 \\ \hline \end{array}$	$\begin{aligned} & .039 \\ & .065 \\ & .11 \\ & .18 \\ & \hline \end{aligned}$	$\begin{aligned} & .034 \\ & .054 \\ & .092 \\ & .15 \\ & \hline \end{aligned}$.049 .078 .13 .21	$\begin{aligned} & .057 \\ & .10 \\ & .19 \\ & .29 \\ & \hline \end{aligned}$	$\begin{aligned} & .062 \\ & .11 \\ & .19 \\ & .30 \\ & \hline \end{aligned}$	$\begin{array}{r} .12 \\ .24 \\ .41 \\ .61 \\ \hline \end{array}$	$\begin{array}{r} .13 \\ .24 \\ .44 \\ .67 \\ \hline \end{array}$	$\begin{aligned} & .076 \\ & .13 \\ & .22 \\ & .35 \\ & \hline \end{aligned}$	$\begin{aligned} & .0095 \\ & .017 \\ & .033 \\ & \hline \end{aligned}$	$\begin{aligned} & .044 \\ & .072 \\ & .12 \\ & .10 \\ & \hline \end{aligned}$	$\begin{aligned} & .088 \\ & .15 \\ & .28 \\ & .41 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.4 \\ & 2.0 \\ & 3.4 \\ & \hline \end{aligned}$
5.1			.0048 .0058 .0081 .0095	$\begin{array}{r} .018 \\ .021 \\ .022 \\ .033 \\ \hline \end{array}$	$\begin{array}{r} .035 \\ .042 \\ .043 \\ .064 \\ \hline \end{array}$	$\begin{array}{r} .005 \\ .042 \\ .042 \\ .003 \\ \hline \end{array}$	$\begin{array}{r} .052 \\ .082 \\ .083 \\ .094 \\ \hline \end{array}$.035 .042 .043 .085	$\begin{aligned} & .044 \\ & .052 \\ & .054 \\ & .080 \\ & \hline \end{aligned}$	$\begin{array}{r} .014 \\ .053 \\ .055 \\ .013 \\ \hline \end{array}$.070 .084 .086 .13	$\begin{array}{r} .070 \\ .083 \\ .084 \\ .13 \\ \hline \end{array}$.0046 .0056 .0081 .0095	$\begin{array}{r} .044 \\ .052 \\ .053 \\ .079 \\ \hline \end{array}$	$\begin{array}{r} .10 \\ .12 \\ .13 \\ \hline 19 \\ \hline \end{array}$	$\begin{aligned} & 1.8 \\ & 2.3 \\ & 2.3 \\ & 3.3 \\ & \hline \end{aligned}$
5.1		(40 Pn Diry $(04 \mathrm{Pn}$ PGA) (128 Min $P(A)$	$\begin{aligned} & .028 \\ & .052 \\ & .11 \\ & \hline \end{aligned}$	$\begin{array}{r} .061 \\ .11 \\ .23 \\ \hline \end{array}$	$\begin{aligned} & .098 \\ & .18 \\ & .36 \\ & \hline \end{aligned}$	$\begin{aligned} & .091 \\ & .16 \\ & .39 \\ & \hline \end{aligned}$	$\begin{array}{r} .13 \\ .23 \\ .47 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ .21 \\ .44 \\ \hline \end{array}$	$\begin{array}{r} .13 \\ .24 \\ .49 \\ \hline \end{array}$	$\begin{aligned} & .17 \\ & .32 \\ & .65 \\ & \hline \end{aligned}$	$\begin{array}{r} .22 \\ .39 \\ .11 \\ \hline \end{array}$	$\begin{array}{r} .18 \\ .31 \\ .65 \\ \hline \end{array}$	$\begin{aligned} & .028 \\ & .052 \\ & .11 \\ & \hline \end{aligned}$	$\begin{array}{r} 11 \\ .20 \\ .42 \\ \hline \end{array}$	$\begin{array}{r} .24 \\ .41 \\ .88 \\ \hline \end{array}$	$\begin{array}{r} 3.3 \\ 5.6 \\ 12 \\ \hline \end{array}$
5.1		$(40$ Pin DIV $(84$ Pin Poid (12a Mn REA)	$\begin{aligned} & .048 \\ & .093 \\ & .19 \\ & \hline \end{aligned}$	$\begin{aligned} & .089 \\ & .17 \\ & .34 \\ & \hline \end{aligned}$	$\begin{array}{r} .13 \\ .24 \\ .49 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ .22 \\ .45 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ .29 \\ .60 \\ \hline \end{array}$	$\begin{array}{r} .16 \\ .30 \\ .61 \\ \hline \end{array}$	$\begin{array}{r} .17 \\ .32 \\ .86 \\ \hline \end{array}$	$\begin{aligned} & .24 \\ & .45 \\ & .90 \\ & \hline \end{aligned}$	$\begin{array}{r} .28 \\ .52 \\ 1.1 \\ \hline \end{array}$	$\begin{array}{r} .22 \\ .40 \\ .82 \\ \hline \end{array}$	$\begin{aligned} & .048 \\ & .093 \\ & .19 \\ & \hline \end{aligned}$	$\begin{array}{r} 15 \\ .27 \\ .54 \\ \hline \end{array}$	$\begin{array}{r} .28 \\ .50 \\ 1.0 \\ \hline \end{array}$	$\begin{array}{r} 3.4 \\ 5.6 \\ 12 \\ \hline \end{array}$

MIL-HDBK-217F
NOTICE 1
APPENDIX A: PARTS COUNT

Sisetion	Patlypo	$\begin{aligned} & \text { Environ. } \\ & T_{J}(\circ C) \rightarrow \end{aligned}$	$\begin{aligned} & \mathrm{G}_{8} \\ & 50 \end{aligned}$	$\begin{aligned} & G_{F} \\ & 60 \end{aligned}$	$\begin{aligned} & \hline \mathrm{G}_{\mathrm{M}} \\ & 65 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}_{5} \\ & 60 \end{aligned}$	$\begin{aligned} & \hline N_{u} \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & A_{1 K} \\ & 75 \end{aligned}$	$\begin{aligned} & \hline \mathbf{A}_{\mathbf{F}} \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AUC } \\ & 90 \end{aligned}$	$\begin{gathered} A_{U F} \\ 90 \end{gathered}$	$\begin{gathered} A_{R W} \\ 75 \end{gathered}$	$\begin{aligned} & \hline \mathrm{S}_{\mathrm{f}} \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & M_{F} \\ & 65 \end{aligned}$	$\begin{aligned} & \hline M_{L} \\ & 75 \end{aligned}$	C_{L} 60
5.2			$\begin{array}{r} .0047 \\ .0059 \\ .0067 \\ \hline \end{array}$	$\begin{array}{r} .018 \\ .022 \\ .023 \\ .038 \end{array}$	$\begin{array}{r} .038 \\ .043 \\ .045 \\ .088 \end{array}$	$\begin{aligned} & .035 \\ & .042 \\ & .044 \\ & .068 \end{aligned}$	$\begin{aligned} & .053 \\ & .063 \\ & .068 \\ & .098 \end{aligned}$	$\begin{aligned} & .037 \\ & .045 \\ & .048 \\ & .075 \end{aligned}$.045 .055 .059 .090	$\begin{aligned} & .80 \\ & .0 .18 \\ & .0180 \\ & .088 \\ & .11 \end{aligned}$	$\begin{aligned} & .90 \\ & .074 \\ & .090 \\ & .099 \\ & .15 \end{aligned}$	$\begin{aligned} & 10 \\ & \\ & .071 \\ & .086 \\ & .089 \\ & .14 \end{aligned}$.0047 .0059 .0067 .011		$\begin{aligned} & 13 \\ & \hline .11 \\ & .13 \\ & .13 \\ & .20 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.3 \\ & 2.3 \\ & 3.3 \end{aligned}$
5.2	Momorios PATOM, UVEPPRSM, EEPROM, EAPROM EEADG: Up io iok 18K 10 64M 64K 10 2501K 256K $\quad 1 \mathrm{MB}$	$\begin{aligned} & \text { (24 Pin DFF } \\ & \text { (2A Pin DFF' } \\ & \text { (28 Pn DFF' } \\ & (40 \text { Pn DFF' } \end{aligned}$	$\begin{array}{r} .0049 \\ .0061 \\ .0072 \\ .012 \\ \hline \end{array}$	$\begin{array}{r} .018 \\ .022 \\ .024 \\ .038 \\ \hline \end{array}$	$\begin{aligned} & .036 \\ & .044 \\ & .046 \\ & .077 \\ & \hline \end{aligned}$	$\begin{array}{r} .036 \\ .043 \\ .045 \\ .068 \\ \hline \end{array}$	$\begin{aligned} & .053 \\ & .084 \\ & .087 \\ & .10 \\ & \hline \end{aligned}$	$\begin{aligned} & .037 \\ & .048 \\ & .051 \\ & .080 \\ & \hline \end{aligned}$	$\begin{array}{r} .046 \\ .058 \\ .061 \\ .095 \\ \hline \end{array}$	$\begin{aligned} & .049 \\ & .082 \\ & .073 \\ & .12 \\ & \hline \end{aligned}$	$\begin{aligned} & .075 \\ & .093 \\ & .10 \\ & .16 \\ & \hline \end{aligned}$	$\begin{array}{r} .072 \\ .087 \\ .092 \\ \hline 14 \\ \hline \end{array}$	$\begin{aligned} & .0048 \\ & .0082 \\ & .0072 \\ & .012 \\ & \hline \end{aligned}$	$\begin{aligned} & .045 \\ & .054 \\ & .057 \\ & .088 \end{aligned}$	$\begin{array}{r} .11 \\ .13 \\ .13 \\ .20 \\ \hline \end{array}$	$\begin{aligned} & 1.9 \\ & 2.3 \\ & 2.3 \\ & 3.3 \\ & \hline \end{aligned}$
5.2		$\begin{aligned} & \text { (18 Pin DFFy } \\ & \text { (22 Pin OFF' } \\ & 124 \text { Pn DFF' } \\ & 128 \text { Pn DFFI } \end{aligned}$	$\begin{array}{r} .0040 \\ .0055 \\ .0074 \\ .011 \\ \hline \end{array}$	$\begin{array}{r} .014 \\ .019 \\ .023 \\ .032 \\ \hline \end{array}$	$\begin{aligned} & .027 \\ & .036 \\ & .043 \\ & .057 \\ & \hline \end{aligned}$	$\begin{array}{r} .027 \\ .034 \\ .040 \\ .053 \\ \hline \end{array}$	$\begin{array}{r} .040 \\ .051 \\ .000 \\ .077 \\ \hline \end{array}$	$\begin{aligned} & .029 \\ & .039 \\ & .049 \\ & .070 \\ & \hline \end{aligned}$	$\begin{array}{r} .035 \\ .047 \\ .058 \\ .080 \end{array}$	$\begin{aligned} & .040 \\ & .046 \\ & .078 \\ & .12 \end{aligned}$	$\begin{aligned} & .059 \\ & .079 \\ & .10 \\ & .15 \\ & \hline \end{aligned}$	$\begin{aligned} & .055 \\ & .070 \\ & .084 \\ & .11 \\ & \hline \end{aligned}$	$\begin{aligned} & .0040 \\ & .0055 \\ & .0074 \\ & .011 \\ & \hline \end{aligned}$	$\begin{array}{r} .034 \\ .043 \\ .051 \\ .067 \\ \hline \end{array}$	$\begin{aligned} & .080 \\ & .10 \\ & .12 \\ & .15 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.7 \\ & 1.9 \\ & 2.3 \end{aligned}$
5.2			$\begin{aligned} & .0079 \\ & .014 \\ & .023 \\ & .043 \\ & \hline \end{aligned}$	$\begin{array}{r} .022 \\ .034 \\ .053 \\ .092 \\ \hline \end{array}$	$\begin{aligned} & .038 \\ & .057 \\ & .084 \\ & .14 \\ & \hline \end{aligned}$	$\begin{array}{r} .034 \\ .050 \\ .071 \\ .11 \\ \hline \end{array}$	$\begin{aligned} & .050 \\ & .073 \\ & .10 \\ & .18 \\ & \hline \end{aligned}$	$\begin{aligned} & .048 \\ & .077 \\ & .12 \\ & .22 \\ & \hline \end{aligned}$	$\begin{array}{r} .054 \\ .085 \\ .13 \\ .23 \\ \hline \end{array}$	$\begin{array}{r} .083 \\ .14 \\ .25 \\ .48 \\ \hline \end{array}$	$\begin{array}{r} .10 \\ .17 \\ .27 \\ .49 \\ \hline \end{array}$	$\begin{aligned} & .073 \\ & .11 \\ & .16 \\ & .26 \\ & \hline \end{aligned}$	$\begin{aligned} & .0079 \\ & .014 \\ & .023 \\ & .043 \\ & \hline \end{aligned}$	$\begin{aligned} & .044 \\ & .065 \\ & .092 \\ & .15 \\ & \hline \end{aligned}$	$\begin{aligned} & .098 \\ & .14 \\ & .19 \\ & .30 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.4 \\ 1.8 \\ 1.9 \\ .3 .3 \\ \hline \end{array}$
5.2			$\begin{array}{r} .010 \\ .017 \\ .028 \\ .053 \\ \hline \end{array}$	$\begin{aligned} & .0218 \\ & .043 \\ & .065 \\ & .12 \\ & \hline \end{aligned}$	$\begin{aligned} & .050 \\ & .071 \\ & .10 \\ & .18 \\ & \hline \end{aligned}$	$\begin{aligned} & .048 \\ & .0013 \\ & .065 \\ & .15 \end{aligned}$	$\begin{aligned} & .087 \\ & .091 \\ & .12 \\ & .21 \\ & \hline \end{aligned}$	$\begin{aligned} & .082 \\ & .095 \\ & .15 \\ & .27 \\ & \hline \end{aligned}$	$\begin{aligned} & .070 \\ & .11 \\ & .18 \\ & .29 \\ & \hline \end{aligned}$	$\begin{array}{r} .10 \\ .18 \\ .30 \\ .58 \\ \hline \end{array}$	$\begin{array}{r} .13 \\ .21 \\ .33 \\ .81 \\ \hline \end{array}$	$\begin{aligned} & .098 \\ & .14 \\ & .19 \\ & .33 \\ & \hline \end{aligned}$	$\begin{aligned} & .010 \\ & .017 \\ & .028 \\ & .053 \\ & \hline \end{aligned}$	$\begin{aligned} & .058 \\ & .081 \\ & .11 \\ & .19 \\ & \hline \end{aligned}$	$\begin{array}{r} .13 \\ .18 \\ .23 \\ .39 \\ \hline \end{array}$	$\begin{array}{r} 1.9 \\ 2.3 \\ 2.3 \\ 3.4 \\ \hline \end{array}$
5.2			$\begin{aligned} & .0075 \\ & .012 \\ & .18 \\ & .033 \\ & \hline \end{aligned}$	$\begin{array}{r} .023 \\ .033 \\ .045 \\ .079 \\ \hline \end{array}$	$\begin{aligned} & .043 \\ & .058 \\ & .074 \\ & .13 \\ & \hline \end{aligned}$	$\begin{aligned} & .041 \\ & .054 \\ & .065 \\ & .11 \\ & \hline \end{aligned}$	$\begin{array}{r} .060 \\ .079 \\ .095 \\ .16 \\ \hline \end{array}$	$\begin{aligned} & .050 \\ & .072 \\ & .10 \\ & .18 \\ & \hline \end{aligned}$	$\begin{aligned} & .058 \\ & .083 \\ & .11 \\ & .20 \\ & \hline \end{aligned}$	$\begin{aligned} & .077 \\ & .12 \\ & .19 \\ & .35 \\ & \hline \end{aligned}$	$\begin{array}{r} .10 \\ .15 \\ .22 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & .084 \\ & .11 \\ & .14 \\ & .24 \\ & \hline \end{aligned}$	$\begin{aligned} & .0075 \\ & .012 \\ & .18 \\ & .033 \\ & \hline \end{aligned}$	$\begin{array}{r} .052 \\ .089 \\ .084 \\ .14 \\ \hline \end{array}$	$\begin{array}{r} .12 \\ .15 \\ .18 \\ .30 \\ \hline \end{array}$	1.8 2.3 2.3 3.4
5.3	VHSIC Norocialy CNOS			der 10	cioon	VHSIC	MOS									
5.4	GeAs NNMC (EII = 1.5) 1 to 100 Eloments 101 10 1000 Actipe Elomens 	(8 Pn DPP) (16 Pin DW ${ }^{1}$)	$\begin{aligned} & .0013 \\ & .0028 \end{aligned}$	$\begin{aligned} & .0052 \\ & .011 \end{aligned}$	$\begin{aligned} & .010 \\ & .022 \end{aligned}$	$\begin{aligned} & .010 \\ & 0202 \end{aligned}$	$\begin{aligned} & .018 \\ & .034 \end{aligned}$	$\begin{aligned} & .011 \\ & .023 \end{aligned}$	$\begin{aligned} & .013 \\ & .028 \end{aligned}$	$\begin{aligned} & .015 \\ & .030 \end{aligned}$	$\begin{aligned} & .022 \\ & .047 \end{aligned}$	$.021$	$\begin{aligned} & .0013 \\ & .0028 \end{aligned}$	$\begin{aligned} & .013 \\ & .028 \end{aligned}$	$\begin{aligned} & .031 \\ & .068 \end{aligned}$	${ }_{1.2}^{.57}$
5.4	$\begin{aligned} & \text { Geas Digh (Ee }=1.4) \\ & 101000 \text { Active Elomensa } \\ & 1001 \text { io } 10,000 \text { Active Elements } \end{aligned}$	$\begin{aligned} & (38 \mathrm{Pin} \mathrm{DIP}) \\ & (64 \text { Pin PGA) } \end{aligned}$	$\begin{aligned} & .0086 \\ & .013 \\ & \hline \end{aligned}$	$\begin{array}{r} .028 \\ .050 \\ \hline \end{array}$	$\begin{array}{r} .052 \\ .10 \\ \hline \end{array}$	$.052$	$\begin{aligned} & .078 \\ & 15 \end{aligned}$	$\begin{aligned} & .054 \\ & .10 \end{aligned}$	$\begin{aligned} & .087 \\ & 13 \end{aligned}$	$.078$	$\begin{array}{r} 12 \\ .23 \end{array}$	$\begin{array}{r} 11 \\ .20 \\ \hline \end{array}$	$\begin{aligned} & .0066 \\ & .013 \\ & \hline \end{aligned}$	$\begin{array}{r} .065 \\ .13 \\ \hline \end{array}$	$\begin{array}{r} .16 \\ .30 \end{array}$	2.9 5.5

APPENDIX A: PARTS COUNT

NOTICE 1
APPENDIX A: PARTS COUNT
Cimentic Fallure Rave - λ_{0} (Fillures $/ 10^{6}$ Howrs) for Dlecrete Semiconductors (cont'd)

Seration	Pant Type	$\begin{aligned} & \text { Env. } \rightarrow a_{B} \\ & T_{y}(C) \rightarrow 50 \end{aligned}$	$\begin{aligned} & a_{F} \\ & \infty \end{aligned}$	$\begin{aligned} & a_{M} \\ & 65 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}_{\mathrm{S}} \\ & 60 \end{aligned}$	$\begin{aligned} & N_{v} \\ & \infty \end{aligned}$	$\begin{aligned} & A_{1} \\ & 75 \end{aligned}$	$\begin{aligned} & A_{1 F} \\ & 75 \end{aligned}$	$\begin{aligned} & A_{u c} \\ & 90 \end{aligned}$	$\begin{aligned} & A_{U F} \\ & 90 \end{aligned}$	$\begin{gathered} A_{\mathrm{PN}} \\ 75 \end{gathered}$	$\begin{aligned} & s_{F} \\ & 50 \end{aligned}$	$\begin{aligned} & M_{F} \\ & 65 \end{aligned}$	$\begin{aligned} & M_{L} \\ & 75 \end{aligned}$	$\begin{aligned} & c_{1} \\ & \text { so } \end{aligned}$
	opto-mectrionics														
6.11	Photodetector	. 011	. 029	. 13	. 074	. 20	. 084	13	17	23	36	0057	15	. 51	6.6
6.11	Optoteocrear	. 027	. 070	. 31	. 17	. 47	. 20	. 30	42	. 56	85	. 013	. 35	1.2	16
6.11	Empres	. 00047	. 0012	. 0056	. 0031	. 0084	. 0035	. 0053	. 0074	0098	015	. 00324	. 0067	. 021	28
6.12	Aphaxumerce Dimplay	. 0062	. 016	073	040	. 11	. 046	. 069	. 096	. 13	20	. 0031	082	28	3.6
0.13	Lreor Dloco. CraneN Gans	5.1	16	78	39	120	58	86	${ }^{\infty}$	110	240	2.6	87	350	3500
6.13		9.0	28	135	69	200	100	150	150	200	403)	4.5	150	600	6200
7	tuass	5	Seation	Hnctuca	Focative	CRTE,	Fror	Inptiore	ystrone	WTs, M	errons)				
8	Lasers		seator	。											

$\begin{gathered} \text { Section } \\ \hline \end{gathered}$	Pert Type or Diencetric	Sirle	Minc-	$\begin{aligned} & E_{N v} \rightarrow G_{B} \\ & T_{A}(C) \rightarrow 30 \end{aligned}$	${ }_{4}^{C_{F}}$	G_{4}	$\begin{aligned} & \mathrm{N}_{\mathrm{s}} \\ & 40 \end{aligned}$	$\begin{aligned} & h_{U} \\ & 45 \end{aligned}$	$\begin{aligned} & A_{1 C} \\ & 55 \end{aligned}$	$\begin{aligned} & \hline A_{I F} \\ & 55 \end{aligned}$	$\begin{aligned} & 4_{14} \\ & 70 \end{aligned}$	$\begin{aligned} & \lambda_{u F} \\ & 70 \end{aligned}$	$\begin{aligned} & A_{\text {RW }} \\ & 55 \end{aligned}$	$\begin{aligned} & \mathcal{S}_{\mathrm{F}} \\ & 30 \end{aligned}$	$\begin{aligned} & M_{F} \\ & 45 \end{aligned}$	$\begin{gathered} M_{L} \\ 55 \end{gathered}$	C_{1} 40
10.1	Paper. By Pase	${ }_{\sim}$	25	. 0038	. 0072	. 033	018	. 055	. 023	03	070	. 13	. 083	. 0018	. 044	. 12	2.1
10.1	Paper, ByPases	CA	12800	. 0039	. 0087	. 042	022	. 070	. 035	. 047	. 19	. 35	. 13	. 002	. 056	. 19	2.5
10.2	Pepempliaric. Foeat orrough	GRT	11003	. 0047	. 0096	. 044	. 034	. 073	. 030	. 040	. 094	. 15	. 11	. 0024	. 058	. 16	2.7
10.3	Preariflatic Fimm	CPV	14157	0021	. 0042	. 017	. 010	. 030	. 0088	013	. 026	. 048	. 044	. 0010	. 023	. 063	1.1
10.3	Puperfitaste Fim	COR	19979	. 0021	. 0042	. 017	. 010	. 030	0088	. 013	. 026	. 048	. 044	. 0010	. 023	. 063	1.1
10.4	Moselitred Paperplastic	वR	30022	. 0029	. 0058	. 023	. 014	. 041	. 012	018	. 037	. 066	. 060	. 0014	. 032	088	1.5
10.4	Monilized Pinita Plastic	CH	18912	. 0029	. 0058	. 023	014	. 041	. 012	018	. 037	. 066	060	. 0014	. 032	. 088	1.5
10.5	Mcmilied PaperPieate	CFR	55514	. 0041	. 0083	. 042	. 021	. 067	. 026	. 048	086	14	. 10	. 0020	. 054	. 15	2.5
10.8	Mcmelized Plasuc	CPH	83421	. 0023	. 0092	. 019	012	. 033	. 0096	. 014	. 034	. 053	. 048	. 0011	. 026	. 07	1.2
10.7	MICA (Dpped er Moideal	CWA	39001	. 0005	. 0015	. 0091	. 0044	. 014	. 0068	. 0095	. 054	. 069	031	. 00025	. 012	. 046	45
10.7	mica (0ppedt	Cn	5	. 0005	. 0015	. 0091	. 0044	. 014	. 0068	. 0095	. 054	. 060	031	. 00025	. 012	. 046	. 45
10.8	MICA fevions	CB	10050	. 018	. 037	. 19	. 094	. 31	. 10	. 14	47	. 60	. 48	. 0091	. 25	. 68	11
10.9	Glase	CrA	23280	. 00032	. 00098	. 0059	. 0029	. 0094	. 0044	. 0062	. 035	. 046	. 020	. 00016	. 0078	. 030	. 29
10.9	Glase	cr	11272	.00032	. 00088	. 0050	. 0029	. 0094	. 0044	. 0062	. 035	. 046	020	. 00016	. 0076	. 030	29
10.10	Cerunte (Gen Pupoer)	CK^{\prime}	11915	. 0036	. 0074	. 034	. 019	. 056	. 015	. 015	. 092	. 048	. 077	. 0014	. 049	. 13	2.3
10.10	Carante (Gion Pupowe)	CNA	39014	. 0038	. 0074	. 034	. 019	. 058	. 015	. 015	. 032	. 048	077	. 0014	. 049	. 13	2.3
10.11	Cersuric (Tompa Cormp)	\sim_{C}	20	.00078	. 0022	. 013	. 0056	. 023	. 0077	. 015	. 053	. 12	046	. 00039	. 017	. 085	68
10.11	Censote Chip	Con	55881	.00078	. 0022	. 013	. 0056	. 023	. 0077	. 015	. 053	. 12	. 046	. 00039	. 017	. 065	. 68
10.12	Triniom, 8014	Csp	38000	. 0018	. 0039	. 016	. 0097	. 028	. 0091	. 011	. 034	. 057	055	. 00072	. 022	. 066	1.0
10.13	Tramem, Morrsold	as	38008	. 0081	. 013	. 069	. 039	. 11	. 031	.061	. 13	29	. 18	. 0030	. 089	26	4.0
10.13	Tormam, Mor-Sold	a	3885	. 0081	. 013	. 069	. 038	. 11	. 031	. 061	. 13	29	. 18	. 0030	. 089	28	4.0
10.14	Auminum Oade	an	39018	. 024	. 081	. 42	. 18	. 59	46	55	2.1	2.6	1.2	. 012	. 49	1.7	21
10.15	Aknirum Dy	CE	62	. 020	. 081	. 58	24	. 83	. 73	88	4.3	5.4	2.0	. 015	. 68	2.8	28
10.16	Verieto, Corrartic	cV	81	. 00	. 27	1.2	. 71	2.3	. 69	1.1	6.2	12	4.1	. 032	1.9	5.9	85
10.17	Verietio, Fiven	PC	14000	. 033	. 13	. 62	. 31	. 93	. 21	28	2.2	3.3	2.2	. 016	. 93	3.2	37
10.18	Varnela, Ar Timmer	CT	92	. 000	. 33	1.6	. 87	3.0	1.0	1.7	9.9	10	6.1	. 040	2.5	8.9	100
10.19	Verable Veamm	0	23180	0.4	1.3	6.7	3.6	13	5.7	10	58	90	23	. 20	.	.	
NOTE: $1{ }^{-}$- Not Morrally ueed in tha Ef a $T_{A}=$ Dotmill Compormen Antion				ontrorment vent Tormperalur	$\text { (}{ }^{(C)}$												
				Quatly		S Established Renability Syles				Mnl-SPEC		$\frac{\text { Lover }}{10}$					

MIL-HDBK-217F
NOTICE 1
APPENDIX A: PARTS COUNT

[^0]Coneric Fallure Rete, λ_{g} (Fallures/10 0^{6} Hours) for Miscellencous Parts

$\begin{gathered} \text { Section } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Por Type } \\ & \text { Devectic } \end{aligned}$	MR.	$\begin{aligned} & E m_{v} \rightarrow \sigma_{B} \\ & T_{A}(c) \rightarrow 30 \end{aligned}$	$\begin{aligned} & G_{F} \\ & 40 \end{aligned}$	$\begin{aligned} & G_{M} \\ & 45 \end{aligned}$	$\begin{gathered} \mathrm{N}_{\mathrm{S}} \\ 40 \end{gathered}$	$\begin{aligned} & N_{U} \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & A_{1 C} \\ & 55 \end{aligned}$	$\begin{aligned} & A_{\text {IF }} \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & A_{U C} \\ & 70 \end{aligned}$	$\begin{aligned} & A_{1 F} \\ & 70 \end{aligned}$	$\begin{gathered} A_{\text {PW }} \\ 55 \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{F}} \\ & 30 \end{aligned}$	$\begin{aligned} & M_{F} \\ & 45 \end{aligned}$	$\begin{aligned} & M_{l} \\ & 55 \end{aligned}$	$\begin{aligned} & G_{2} \\ & 40 \end{aligned}$
	SNGLE CONECTIONS															
17.1	Hend Sotter, wo Wrapping		. 0028	. 0052	018	. 010	. 029	. 010	. 016	. 016	. 021	. 042	. 0013	. 023	. 062	1.1
17.1	Hend Sodier, wWreppha		. 00014	. 00028	. 00098	. 00056	. 0015	. 00056	. 00084	. 00004	. 0011	. 0022	. 00007	. 0013	. 0034	059
17.1	Comp		. 00028	. 00052	. 0018	. 0010	. 0020	. 0010	. 0016	. 0016	. 0021	. 0042	. 00013	. 0023	. 0062	. 11
17.1	Wed		. 000050	. 000100	. 000350	. 000200	. 000550	. 000200	. 000300	. 000300	. 000400	. 000800	. 000025	. 000450	. 001200	. 021000
17.1	Sotberieno Whep		. 0000035	. 000007	. 000025	. 000014	. 000039	. 000014	. 000021	. 000021	.000028	. 000056	. 0000018	. 000031	. 000084	0015
17.1	Clip Tammation		. 00012	. 00024	00084	. 00048	. 0013	.00048	. 00072	. 00072	. 00096	. 0019	. 00006	. 0011	. 0029	. 050
17.1	Achow Solde		. 000068	. 000138	. 000483	. 000278	. 000759	. 000278	. 000414	. 000214	. 000552	. 001104	. 000035	. 000621	. 001656	02898
	METERS, PXNEL															
18.1	OC Anmaterar ortomer	M-1030	0.09	0.36	2.3	1.1	3.2	2.5	3.8	5.2	8.6	5.4	0.099	5.4	N/A	N/A
18.1	AC Amonerer or Vothater	M-1050n	0.15	0.61	3.8	1.8	5.4	4.3	6.4	8.0	11	9.2	0.17	8.2	N/A	N/A
19.1	Ount Cryan	C-3008	. 032	. 096	. 32	. 18	. 51	. 38	. 54	. 70	. 90	14	. 016	.42	1.0	16
20.1	Lempe, moendecoerst, AC		3.9	7.8	12	12	16	16	16	19	23	19	2.7	16	23	100
20.1	Lempe, haendencent, DC		13	26	38	38	51	51	51	64	77	64	0.0	51	77	350
	ELECTRONC FLITERS															
21.1	Cementofarito	F.15738	. 022	. 044	. 13	. 088	. 20	. 15	. 20	. 24	. 29	24	. 018	. 15	. 33	2.8
21.1	Divarum LC Comp	F-15733	. 12	24	. 72	. 48	1.1	. 84	1.1	1.3	1.6	1.3	. 096	. 84	4.8	14
21.1		F-18027	. 27	54	1.6	1.1	2.4	1.9	2.4	3.0	9.5	3.0	. 22	1.9	4.1	32
22.1	Fuses		. 010	. 020	. 080	. 050	. 11	. 090	. 12	. 15	. 18	16	. 009	. 10	21	2.3

MIL-HDBK-217F

π_{Q} Factor for Use with Section $\mathbf{1 1 - 2 2}$ Devices

Section \#	Pant Type	$\begin{gathered} \hline \text { Established } \\ \text { Reliability } \end{gathered}$	MIL-SPEC	Non-MIL
11.1, 11.2	Inductive Devices	.25*	1.0	10
12.1, 12.2, 12.3	Rotating Devices	N/A	N/A	N/A
13.1	Retays, Merchanical	. 60	3.0	9.0
13.2	Relays, Solid State and Time Delay (H)brid \& Solid State)	N/A	1.0	4
14.1, 14.2	Swilches, Toggle, Pushbutton, Sensitive	N/A	1.0	20
14.3	Switches, Rotary Water	N/A	1.0	50
14.4	Swhiches, Thuintwheel	N/A	1.0	10
14.5	Clrcult Breakers, Thermal	N/A	1.0	8.4
15.1, 15.2, 15.3	Connectors	N/A	1.0	2.0
16.1	Interconnection Assemblies	N/A	1.0	2.0
17.1	Connections	N/A	N/A	N/A
18.1	Meters, Panel	N/A	1.0	3.4
19.1	Quartz Crystals	N/A	1.0	2.1
20.1	Lamps, Incandescent	N/A	N/A	N/A
21.4	Electronic Fillers	N/A	1.0	2.9
22.1	Fuses	N/A	N/A	N/A

[^1]APPENDIX A: PARTS COUNT

Default Parameters for Dlscrete Semlconductors

MIL-HDBK-217F NOTICE 1

Default Parametors for Fesistors							
Section	Part Type	Sryte	MIL-R-SPEC	${ }^{\prime}$ R	π	${ }^{\text {T TAPS }}$	Cominents
9.1 9.1	Composition Compostion	${ }_{\text {FICR }}$	39008 11	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$			Pw. Stess = 5, 1M ohm Pwr. Stress = 5. 1 Mohm
9.2	Film, Insulated	FLR	39017	1.1			Pwr. Stress = 5, 1 M ohm
9.2	Film, Insulated	RL	$2 ? 684$	1.1			Pwr. Stress $=5.1 \mathrm{M} \mathrm{ohm}$
9.2	Fim, RN(R,Cor N)	FNR	55182	1.1			Pwr. Stress $=5.1 \mathrm{~N}$ ohm
9.2	Fim	FN	10509	1.1			Pwr. Stress = 5, 1 N chm
9.3 9.4	Film. Povver Fixed, Notwork	$\begin{aligned} & \text { PD } \\ & \text { RZ } \end{aligned}$	$\begin{aligned} & 11804 \\ & 83401 \end{aligned}$	1.0			Pwr. Stress = 5, 100 ohm Pur. Stress $=.5, T_{C}=T_{A}+28^{\circ} \mathrm{C}$, 10 Film Resistors
9.5	Wrewound, Accurate	FBR	39005	1.7			Pwr. Stress $=5,100 \mathrm{~K}$ ohms
9.5	Wrewound, Accisrate	RB	93	1.7			Pwr. Stress = 5, 100 K ohms
9.6	Wrowound, Power	FWR	39007	1.1			$P^{\text {PWr. Stress }}=.5,5 \mathrm{~K}$ ohms, RWR 84
9.6	Wrewound, Power	RW	26	1.0			Pwr. Stress $=.5,5 \mathrm{~K}$ ohms. AW10
9.7	Wirewound, Power, Charsts Mountad	PER	39009	1.1			Pwr. Stress = .5. Noninductlvely Wound, 5K ohm, RER 55
9.7	Wrewound, Power, Chassts Mounterd	RE	18546	1.1			PWr. Stress $=.5, \mathrm{MIL}-\mathrm{R}-18546$, Char. N, 5K ohm, RE75
8.8	Thermistor	HTH	236413				Disk Type
9.9	Wrowound, Verinble	PIR	39015	1.4	1.1	1.0	Pwr. Stress = 5, 5K ohms, 3 Taps, Voltage Stress $=.1$
9.9 9.10	Wrowound, Vartable Wrewound, Variable, Procision	RT	27208 12934	1.4	1.1 1.1	1.0 1.0	PWr. Siress $=5,3$ Taps, Voltage Stresti $=.1$ Pur. Siress $=5$, Construction Class $5(\pi=1.5)$
9.10 9.11	Wrewound, Veriabie, Procision	PR	12934 19	1.4 1.4	1.1 1.0	1.0 1.0	Pwr. Siress $=.5$, Construction Class $5\left(\pi_{c}=1.5\right)$. 50K ohm, 3 Taps, Voltage Siress = . 1 PWr. Siress $=5,5 \mathrm{~K}$ ohms, 3 Taps, Voltage Stress = 5
9.11	Wirewound, Variable, Semipreciston	PA	19	1.4	1.0	1.0	Pwr. Siress = b, bk ohms, 3 Taps, Voitage Stress m. 5
9.11	Wrimound, Senilpreciston	$\begin{aligned} & \text { PK } \\ & \text { OK } \end{aligned}$	39002	1.4	1.0 1.0	1.0	
9.12	Wirmound, Variable, Power	PP	22	1.4	1.0	1.0	Pwr. Stress $=5,3$ Taps, Voltage Stessis $=.5$, Unenclosed ($\pi_{c}=1$)
9.13	Nonwirewound, Vartable	RNR	39035	1.2	1.0	1.0	Pwr. Stress $=5.5200 \mathrm{Kohm}, 3$ Taps, Voltage Stress $=.5$
9.13	Nonwtrewound, Variable	RJ	22097	1.2	1.0	1.0	Pwr. Stress = .5, 200 K ohm, 3 Taps, Voltagi Stress $=.5$
9.14	Comporition, Varlable	RN	94	1.2	1.0	1.0	Pwr. Stress $=5,270 \mathrm{~K}$ ohm, 3 Taps, Voltage Stoss $=.5$
9.15	Nonwrewound, Variable Precision	RO	39023	1.2	1.0	1.0	Pwr. Stiesis $=.5,200 \mathrm{Kohm}$,3 Taps, Voltage Stress $=.5$
9.15	Fim, Vartable	FVC:	23285	1.2	1.0	1.0	Pwr. Stess $=.5$ 200K ohm, 3 Taps, Voltage Stress $=.5$

Default Parameters for Capacitors

Section	Part Type or	Style	MIL-C-SPEC	${ }^{\pi} \mathrm{CV}$	Temp. Rating	Comments
10.1	Paper, By-Pass	${ }^{\text {c }}$	25	1.0	125	Voltage Stress $=.5, .15 \mu \mathrm{~F}$
10.1	Paper, By-Pass	CA	12889	1.0	85	Voltage Stress $=.5, .15 \mu \mathrm{~F}$
10.2	Paper/Plastic, Feed-through	CZR	11693	1.0	125	Voltage Stress $=.5$, $.061 \mu \mathrm{~F}$
10.3	Paper/Plastic Film	CPV	14157	1.0	125	Voltage Stress $=.5, .027 \mu \mathrm{~F}$
10.3	Papor/Plastic Fllm	CAR	19978	1.0	125	Volage Stress $=.5$, $.033 \mu \mathrm{~F}$
10.4	Metalized Paper/Plastic	CH	39022	1.0	125	Voltage Stress $=.5, .14 \mu \mathrm{~F}$
10.4	Metallized Plastic/Plastic	CH	18312	1.0	125	Voltage Stress $=.5, .14 \mu \mathrm{~F}$
10.5	Metalized PaperPlastic	CPR	55514	1.0	125	Voltage Stress $=.5 . .33 \mu \mathrm{~F}$
10.6	Metallized Plastic	CPH	83421	1.0	125	Voltage Stress $=.5, .14 \mu \mathrm{~F}$
10.7 10.7	MICA (Dipped or Molded)	CMR	39001	1.0	125	Voltage Stress $=.5,300 \mathrm{pF}$
10.8	MICA (Dipped) MICA (Bution)	CM	5	1.0	125	Voltage Stress $=.5,300 \mathrm{pF}$
10.9	Glass	CYR	10950 23269	1.0 1.0	150 125	Voltage Stress $=.5,160 \mathrm{pF}$
10.9	Glass	Cr	11272	1.0	125	Voltage Stress = .5.30 pF
10.10	Ceramic (Gen. Purpose)	ck	11015	1.0	125	Voltage Stress $=.5,3300 \mathrm{pF}$
10.10	Ceramic (Cen. Puppee)	CKR	39014	1.0	125	Voltage Stress $=.5,3300 \mathrm{pF}$
10.11 10.11	Cerminic (Tomp. Comp.)	COR	20	1.0	125	Votage Stress $=.5 .81 \mathrm{pF}$
10.12	leremic chip	COR	55681 39003	1.0 1.0	125 125	Voltage Stress $=$.5, 81 pF
						resistance, $\pi_{S R}=.13$
10.13	Tenmum, Non-Solld	CLR	39006	1.0	125	Voltage Stress $=.5$, Foil, Hermetic, $20 \mu \mathrm{~F}, \pi_{\mathrm{C}}=1$
10.13	Tenmum, Non-Solld	a	3965	1.0	125	Voltage Stress $=.5$, Foil, Hermetic, $20 \mu \mathrm{~F}, \pi_{\mathrm{c}}=1$
10.14	Auminum Oxide	CuR	39018	1.3	125	Voltage Stress $=.5 .1700 \mu \mathrm{~F}$
10.15	Aluminum Dry	CE	62	1.3	85	Voltage Stress $=.5,1600 \mu \mathrm{~F}$
10.16 10.17	Variable, Ceramic Variable, Piston	CV	81		85	Voltage Stress $=.5$
10.18	Variabbe, Piston Varkble, Ak Trimmer	PC CT	14409 92		125	Voltage Stress $=.5$
10.19	Variable, Vacuum	cG	23183		85	Voltage Stress $=.5$, Variable Configuration

APPENDIX A: PARTS COUNT

[^0]:

[^1]: - Category applies onty to MIL-C-39010 Coils.

