- 6. Process or Product Monitoring and Control
- 6.1. Introduction

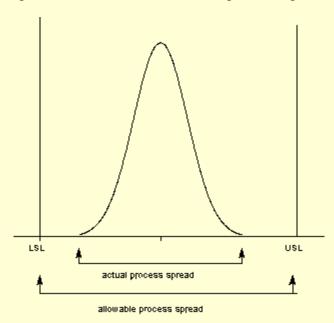
6.1.6. What is Process Capability?

Process capability compares the output of an *in-control* process to the specification limits by using *capability indices*. The comparison is made by forming the ratio of the spread between the process specifications (the specification "width") to the spread of the process values, as measured by 6 process standard deviation units (the process "width").

Process Capability Indices

A process capability index uses both the process variability and the process specifications to determine whether the process is "capable" We are often required to compare the output of a stable process with the process specifications and make a statement about how well the process meets specification. To do this we compare the natural variability of a stable process with the process specification limits.

A <u>capable</u> process is one where almost all the measurements fall inside the specification limits. This can be represented pictorially by the plot below:



There are several statistics that can be used to measure the capability of a process: C_p , C_{pk} , C_{pm} .

4/27/06 11:48 AM

Most capability indices estimates are valid only if the sample size used is 'large enough'. Large enough is generally thought to be about 50 independent data values.

The C_p , C_{pk} , and C_{pm} statistics assume that the population of data values is normally distributed. Assuming a two-sided specification, if μ and σ are the mean and standard deviation, respectively, of the normal data and USL, LSL, and T are the upper and lower specification limits and the target value, respectively, then the population capability indices are defined as follows:

Definitions of various process capability indices

$$C_p = rac{USL - LSL}{6\sigma}$$

$$C_{pk} = \min\left[rac{USL - \mu}{3\sigma}, rac{\mu - LSL}{3\sigma}
ight]$$

$$C_{pm} = rac{USL - LSL}{6\sqrt{\sigma^2 + (\mu - T)^2}}$$

Sample estimates of capability indices

<u>Sample estimators</u> for these indices are given below. (Estimators are indicated with a "hat" over them).

$$egin{aligned} \hat{C}_p &= rac{USL - LSL}{6s} \ \hat{C}_{pk} &= \min{[rac{USL - ar{x}}{3s}, rac{ar{x} - LSL}{3s}]} \ \hat{C}_{pm} &= rac{USL - LSL}{6\sqrt{s^2 + (ar{x} - T)^2}} \end{aligned}$$

The estimator for C_{pk} can also be expressed as $C_{pk} = C_p(1-k)$, where k is a scaled distance between the midpoint of the specification range, m, and the process mean, μ .

Denote the midpoint of the specification range by m = (USL+LSL)/2. The distance between the process mean, μ , and the optimum, which is m, is μ - m, where $m \le \mu \le LSL$. The scaled distance is

$$k = \frac{|m - \mu|}{(USL - LSL)/2}, \qquad 0 \le k \le 1$$

(the absolute sign takes care of the case when $LSL \leq \mu \leq m$). To determine the estimated value, \hat{k} , we estimate μ by \bar{x} . Note that $\bar{x} \leq \bar{U}SL$.

4/27/06 11:48 AM 2 of 8

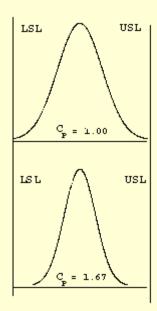
The estimator for the C_p index, adjusted by the k factor, is

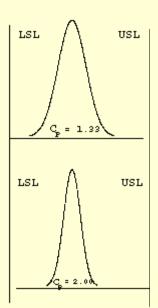
$$\hat{C}_{pk} = \hat{C}_p(1-\hat{k})$$

Since $0 \le k \le 1$, it follows that $\hat{C}_{pk} \le \hat{C}_p$.

Plot showing C_p for varying process widths

To get an idea of the value of the ${\cal C}_p$ statistic for varying process widths, consider the following plot





This can be expressed numerically by the table below:

Translating capability into "rejects"

USL - LSL	6σ	8σ	10 σ	12 σ
C_p	1.00	1.33	1.66	2.00
Rejects	.27%	64 ppm	.6 ppm	2 ppb
% of spec used	100	75	60	50

where ppm = parts per million and ppb = parts per billion. Note that the reject figures are based on the assumption that the distribution is centered at μ .

We have discussed the situation with two spec. limits, the USL and LSL. This is known as the *bilateral* or two-sided case. There are many cases where only the lower or upper specifications are used. Using one spec limit is called *unilateral* or one-sided. The corresponding capability indices are

4/27/06 11:48 AM 3 of 8

One-sided specifications and the corresponding capability indices

$$C_{pu} = \frac{\text{allowable upper spread}}{\text{actual upper spread}} = \frac{USL - \mu}{3\sigma}$$

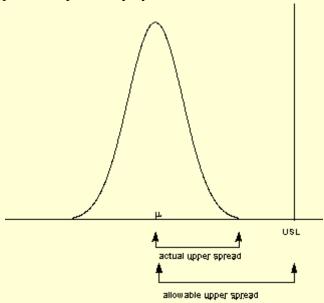
and

and
$$C_{pl} = \frac{\text{allowable lower spread}}{\text{actual lower spread}} = \frac{\mu - LSL}{3\sigma}$$
 where μ and σ are the process mean and standard deviation, respectively.

Estimators of C_{pu} and C_{pl} are obtained by replacing μ and σ by \bar{x} and s, respectively. The following relationship holds

$$C_p = \left(C_{pu} + C_{pl}\right)/2.$$

This can be represented pictorially by



Note that we also can write:

$$C_{nk} = \min \{C_{nl}, C_{nu}\}.$$

Confidence Limits For Capability Indices

Confidence intervals for indices

Assuming normally distributed process data, the distribution of the sample \hat{C}_{v} follows from a Chi-square distribution and \hat{C}_{pu} and \hat{C}_{pl} have distributions related to the non-central t distribution. Fortunately, approximate confidence limits related to the normal distribution have been derived. Various approximations to the distribution of \hat{C}_{pk} have been proposed, including those given by Bissell (1990), and we will use a normal approximation.

4/27/06 11:48 AM 4 of 8 The resulting formulas for confidence limits are given below:

100(1- α)% Confidence Limits for C_p

$$Pr\{\hat{C}_p(L_1) \le C_p \le \hat{C}_p(L_2)\} = 1 - \alpha$$

where

$$L_1 = \sqrt{rac{\chi^2_{(
u,lpha/2)}}{
u}} \qquad \quad L_2 = \sqrt{rac{\chi^2_{(
u,1-lpha/2)}}{
u}}$$

 ν = degrees of freedom

Confidence Intervals for C_{pu} and C_{pl}

Approximate $100(1-\alpha)\%$ confidence limits for C_{pu} with sample size n are:

$$C_{pu}(lower) = \hat{C}_{pu} - z_{1-\beta} \sqrt{\frac{1}{9n} + \frac{\hat{C}_{pu}^2}{2(n-1)}}$$

$$C_{pu}(upper) = \hat{C}_{pu} + z_{1-\alpha} \sqrt{\frac{1}{9n} + \frac{\hat{C}_{pu}^2}{2(n-1)}}$$

with z denoting the percent point function of the standard normal distribution. If β is not known, set it to α .

Limits for C_{pl} are obtained by replacing \hat{C}_{pu} by \hat{C}_{pl} .

Confidence Interval for C_{pk}

Zhang et al. (1990) derived the exact variance for the estimator of C_{pk} as well as an approximation for large n. The reference paper is Zhang, Stenback and Wardrop (1990), "Interval Estimation of the process capability index", Communications in Statistics: Theory and Methods, 19(21), 4455-4470.

The variance is obtained as follows:

Let

$$c = \sqrt{n}[\mu - (USL + LSL)/2]\sigma$$
 $d = (USL - LSL)/\sigma$
 $\Phi(-c) = \int_{-inf}^{-c} \frac{1}{\sqrt{2\pi}} \exp{-5z^2 dz}$

Then

4/27/06 11:48 AM 5 of 8

$$\begin{split} &Var(\hat{C}_{pk})\\ &= (d^2/36)(n-1)(n-3)\\ &- (d/9\sqrt{n})(n-1)(n-3)\{\sqrt{2\pi}\exp{(-c^2/2)} + c[1-2\Phi(-c)]\}\\ &+ [(1/9)(n-1)/(n(n-3))](1+c^2)\\ &- [(n-1)/(72n)]\{\frac{\Gamma((n-2)/2)}{\Gamma((n-1)/2)}\}^2\\ &* \{d\sqrt{n} - 2\sqrt{2\pi}\exp{(-c^2/2)} - 2c[1-2\Phi(-c)]\}^2 \end{split}$$

Their approximation is given by:

$$Var(\hat{C}_{pk}) = \frac{n-1}{n-3} - 0.5 \{ \frac{\Gamma((n-2)/2)}{\Gamma((n-1)/2)} \}^2$$

where

$$n \ge 25, 0.75 \le C_{nk} \le 4, \quad |c| \le 100, \text{ and } d \le 24$$

The following approximation is commonly used in practice

$$C_{pk} = \hat{C}_{pk} \pm z_{1-\alpha/2} \sqrt{\frac{1}{9n} + \frac{\hat{C}_{pk}^2}{2(n-1)}}$$

It is important to note that the sample size should be at least 25 before these approximations are valid. In general, however, we need $n \ge 100$ for capability studies. Another point to observe is that variations are not negligible due to the randomness of capability indices.

Capability Index Example

An example

For a certain process the USL = 20 and the LSL = 8. The observed process average, $\overline{\mathbf{x}} = 16$, and the standard deviation, s = 2. From this we obtain

$$\hat{C}_p = \frac{USL - LSL}{6s} = \frac{20 - 8}{6(2)} = 1.0$$

This means that the process is capable as long as it is located at the midpoint, m = (USL + LSL)/2 = 14.

But it doesn't, since $\bar{x} = 16$. The \hat{k} factor is found by

4/27/06 11:48 AM 6 of 8

$$\hat{k} = \frac{|m - \bar{x}|}{(USL - LSL)/2} = \frac{2}{6} = 0.3333$$

and

$$\hat{C}_{pk} = \hat{C}_p(1 - \hat{k}) = 0.6667$$

We would like to have \hat{C}_{pk} at least 1.0, so this is not a good process. If possible, reduce the variability or/and center the process. We can compute the \hat{C}_{pu} and \hat{C}_{vl}

$$\hat{C}_{pu} = rac{USL - ar{x}}{3s} = rac{20 - 16}{3(2)} = 0.6667$$

$$\hat{C}_{pl} = \frac{\bar{x} - LSL}{3s} = \frac{16 - 8}{3(2)} = 1.3333$$

From this we see that the \hat{C}_{pu} , which is the smallest of the above indices, is 0.6667. Note that the formula $\hat{C}_{pk} = \hat{C}_p(1-\hat{k})$ is the algebraic equivalent of the $min\{\hat{C}_{pu}, \hat{C}_{pl}\}$ definition.

What happens if the process is not approximately normally distributed?

What you can do with non-normal data The indices that we considered thus far are based on normality of the process distribution. This poses a problem when the process distribution is not normal. Without going into the specifics, we can list some remedies.

- 1. Transform the data so that they become approximately normal. A popular transformation is the <u>Box-Cox transformation</u>
- 2. Use or develop another set of indices, that apply to nonnormal distributions. One statistic is called C_{npk} (for non-parametric C_{pk}). Its estimator is calculated by

$$\hat{C}_{npk} = \min \left[\frac{USL - median}{p(.995) - median}, \frac{median - LSL}{median - p(.005)} \right]$$

where p(0.995) is the 99.5th percentile of the data and p(.005) is the 0.5th percentile of the data.

For additional information on nonnormal distributions, see <u>Johnson and Kotz (1993)</u>.

4/27/06 11:48 AM 7 of 8

There is, of course, much more that can be said about the case of nonnormal data. However, if a Box-Cox transformation can be successfully performed, one is encouraged to use it.

NIST SEMATECH

HOME

TOOLS & AIDS

SEARCH

BACK NEXT

4/27/06 11:48 AM 8 of 8