Statistics

Statistical Process Control
& Control Charting
Recommended Statistical Course Attendance

Your APQP Team should attend as many classes as time will allow
Basic Definitions

Statistics:
the science of collecting, analyzing, interpreting and presenting data.

A Statistic is a single characteristic taken from this process.
Universe: the collection of all elements

Population: the set of objects of interest

Sample: a subset of objects taken from the population

Random Sample: all possible samples of the same size have an equal chance of occurring.
Statistical Methodology

Statistical methods are procedures for drawing conclusions about populations utilizing information provided by random samples.
Classification of Statistics:

- **Descriptive statistics**: the methodology of efficiently collecting, organizing, and describing data.

- **Inductive Statistics**: the process of drawing conclusions about unknown characteristics of a population usually based from a sample taken from the population.

- **Predictive Statistics**: the process of predicting future values based on historical data.

Tomorrow we will produce 5000 parts, based off of last week's production of: 5250; 5500; 4500; 4750; 5000.
Four Levels of Measurements

- **Nominal**: Objects are classified into simple attributable categories with no quantitative difference between them, (Yes/No, Good/Bad).

- **Ordinal**: Objects are able to be arranged, ranked, or ordered into a meaningful attributable arrangement with no real measurement. (Yellow/Blue/Green, Square/Round/Triangle)

- **Interval**: observations are able to be ranked into exact differences between any two observations, measurements with no natural origin or zero, 80 degrees is not twice as hot as 40 degrees. A one unit scale change corresponds to a one unit change on the object being studied.

- **Ratio**: contains all the properties of interval but has a natural origin. Having a natural origin allows 25 to behalf of 50.

Note that each successive level has all the properties of the previous.
SPC is Concerned With:

- Statistical Methodology
- Data Collection
- Descriptive Measures
- Predictive Statistics
- Statistical Inference
- Organization & presentation

Regression Analysis
Correlation Analysis
Experimental Design
Hypothesis Testing
Dispersion
Frequency Distribution
Central Tendency
Histograms
Data Collection
Venn Diagrams

UNIVERSAL SET
The Total Set of Elements of Interest

SET (A)
Collection of Distinct Objects Having Some Attribute in Common
This is an example of a Null or Empty Set

SUBSET (A)
portion of the set defined in some unambiguous way

** MUTUALLY EXCLUSIVE**
Subsets A & B have no elements in common

Intersect (A ∩ B)
Common Elements of sets \{a,c\}

Union (A U B)
Component Elements of sets \{a,b,c,d\}

Complement (‘) is the inverse of the specific set called out
Complement of set A is A’ or \{∅\} subset A’ = \{c,d,f\}
Events

A *Sample Space* \((S)\) is the set of all possible outcomes.

An *Event* is any subset of a sample space.

A *Simple Event* is any subset of the sample space to include a single outcome. \(S = \{H, T\}\)

A *Compound Event* is any subset of the sample space which consists of two or more simple events.

\(S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}\)

A set of Events is said to be *Collectively Exhaustive* if all simple events are included, (like the equation above).
Putting it all Together

- When gathering data for a process, we must realize that
Organizing Data
Presenting Data
Descriptive Measurement
Statistical Process Control