
Friday, May 14, 1999 2.6 Monte Carlo techniques Page: 1

http://www.asp.ucar.edu/colloquium/1992/notes/part1/
node12.html

    
Next: 2.6 Monte Carlo techniques Up: 2. Measurement Uncertainty Previous:  2.4 The ASME
measurement-uncertainty 

2.5 Propagation of uncertainty estimates
The interesting quantities for research are often derived from the basic measurements by
calculations that combine many measurements into final quantities, transform the
measurements, apply filters, or otherwise convert the fundamental measurements into derived
quantities. In such cases, the uncertainty characteristics of the derived quantities can become
quite complicated and difficult to understand without a prescribed methodology, and serious
errors in interpretation can result. For example, some attempts to derive correlations between
radar reflectivity (Z ) and rainfall (R ) have been distorted by the problem that both are based
on different calculations from the same characteristics of the drop size distributions, and
hence there is a natural correlation between the two that arises purely from correlated error
sources. If data sources are used that provide imprecise estimates of Z  and R , a correlation
will appear that is purely the result of these correlated error contributions and has no
connection with a natural correlation between radar reflectivity and rainfall rate. It would be a
serious error to use the correlation determined in this way to estimate rainfall from radar
reflectivity. 

The following develops a consistent approach, often called "error propagation," that makes it
possible to determine the uncertainty characteristics in derived quantities if the characteristics
of the fundamental measurements are known. Let  =  be a set of measured

quantities with known measurement uncertainties.2.7 Consider derived quantities  = 

, each of which is a function of the measured quantities : 

(2.15)

  

The mean values of , , are then the "best" values for  in the sense that they minimize

the squares of the deviations from these best values. In the same sense, the "best" values for
Y m  are the values .2.8 

The one-standard-deviation uncertainties in  are those that represent the range over

which  can vary while remain within one-standard-deviation of their measured values.

For small deviations, a first-order Taylor expansion relates deviations in  to deviations in 

: 
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(2.16)

  

The variance in Y m  is then obtained by averaging over the N measurements, indicated by
index i : 

(2.17)

  
  

(2.18)

  
  

(2.19)

  

The matrix elements 

(2.20)

  

entering (2.16) are the variances and covariances of the measured quantities, so  is
called the covariance matrix  or the error matrix.  If the relationship between  and is

linear or is assumed linear (as in the first-order Taylor expansion) over the range of
fluctuations, then this matrix is particularly useful for determining the variances in derived
quantities because those variances can be expressed as 

(2.21)

  
  

(2.22)

  

or, in matrix notation, 
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 (2.23)

  

where T mj  =  is the element of the (column) matrix of derivatives of the derived

quantity Y m  with respect to the measured quantity x j  and the superscript t  denotes the
transpose matrix. This general form is valid for any correlations among the original
measurements (which will be represented by off-diagonal elements of ) and properly
represents the correlations among dependent variables. 
  

Example 2.1: A thermocouple can be used to measure temperature, because a junction
between two metals will produce a voltage difference in the two metals which is dependent on
(and nearly proportional to) the temperature of the junction. A common experimental set-up is
shown in Fig.2.3. 

Figure 2.3: Experimental configuration for measuring temperature with a
thermocouple. Junctions J1 and J2 are junctions between copper and constantan
wire, so the voltage V1 is a measure of the temperature difference between T and
T ref . A thermistor R t  measures the bath temperature via the voltage V2, and so
provides a reference temperature to be added to the temperature difference
measured by the thermocouple.  

The thermocouple junctions both produce voltage differences, dependent respectively on the
temperature T  and on the reference bath temperature T ref . The reason for using this
arrangement is that both the wires leading to the instrument measuring the voltage V  are
then copper wires, and can connect to copper junctions at the voltmeter without introducing
additional contact potentials such as would result if the constantan wire were connected
directly to the voltmeter. The uncertainty in T  is then caused by two sources: (a) the
uncertainty in the measurement of  = T -T ref , and (b) the uncertainty in T ref . Often, a
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thermistor is used to measure the temperature of the reference bath (or of a metal block used
in the same way). 

If a thermistor is used to determine the temperature of the reference junction, as shown, there
are two voltages that must be measured to determine the unknown temperature T : V 1,
produced by the pair of thermocouples, and V 2, produced by the thermistor. These are
related to the temperature difference =(T -T ref ) and to T 2, the temperature of the
thermistor junction, by functions Y 1 and Y 2, which often are almost linear relationships: 

(2.24)

  

T 2 = Y 2(V 2) = a 2 V 2 . (2.25)

  

Then the first two fundamental quantities affecting the measurement, in the earlier notation,
are x 1=V 1 and x 2=V 2. 

If V 1 and V 2 are measured by the same voltmeter, part of the uncertainty in V 2 will be
correlated with that in V 1because bias in the voltmeter will affect both measurements in the
same way. This will be reflected in off-diagonal terms in the error matrix, representing
correlations between errors in V 1 and V 2. 

There will also be an error in the measurement of T  introduced by the assumption
that T ref =T 2, because the temperature bath or constant-temperature block may not be
uniform in temperature. Another function Y 3=x 3=T ref -T 2 can be introduced to account for
this error source, which probably will be a systematic error. The measurement T  is then
determined from 

(2.26)

  

Suppose that the voltmeter has a precision of S i  and a systematic error of B i  when
measuring V i , and that the random errors are uncorrelated but the bias errors are always
the same (as might occur for a calibration error). If the only sources of error are these random
and systematic errors and a non-zero value of Y 3, the error matrix for the random component
of the uncertainty is 

(2.27)

  

and the bias component is 
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(2.28)

  

when expressed in terms of the fundamental quantities x 1, x 2, and x 3 representing the two
measurements and the unmeasured difference between T ref  and T 2. 

The sum of these matrices can be used in (2.23) to evaluate the variance in the measured
temperature: 

(2.29)

  

      = a 1
2S 1

2+a 2
2S 2

2+(a 1B 1+a 2B 2)2+B 3
2 . (2.30)

  

The first two terms show that the random contributions add to the net variance in quadrature,
as expected for independent error sources. The next term shows that the bias contributions,
however, add linearly. This results because a bias error affects measurements of  and T 2
in the same way, so the error enters the final result additively. 
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