New to statistics
Involved In Discussions
Hello can someone elaborate (explain) from the article :
Shewhart described two completely different approaches in this equation. The first of these approaches I call the statistical approach since it describes how we approach statistical inference:
1. Choose an appropriate probability model f(x) to use;
2. Choose some small risk of a false alarm ( 1 – P ) to use;
3. Find the exact critical values A and B for the selected model that correspond to this risk of a false alarm;
4. Then use these critical values in your analysis.
While this approach makes sense when working with functions of the data (i.e., statistics) for which we know the appropriate probability model, it encounters a huge problem when it is applied to the original data. As Shewhart pointed out, we will never have enough data to uniquely identify a specific probability model for the original data. In the mathematical sense all probability models are limiting functions for infinite sequences of random variables. This means that they can never be said to apply to any finite portion of that sequence. This is why any assumption of a probability model for the original data is just that—an assumption that cannot be verified in practice. (While lack-of-fit tests will sometimes allow us to falsify this assumption, they can never verify an assumed probability model.)
So what are we to do when we try to analyze data? Shewhart suggested a completely different approach to the equation above. He started by selecting some generic critical values A and B for which the risk of a false alarm, ( 1 – P ) will be reasonably small regardless of what probability model f(x) we might choose. This approach changed what is fixed and what is allowed to vary. With the statistical approach the risk of a false alarm is fixed, and the critical values vary to match the specific probability model. With Shewhart’s approach it is the critical values that are fixed (the three-sigma limits) and the risk of a false alarm that is allowed to vary. This complete reversal of the statistical approach is what makes Shewhart’s approach so hard for those with statistical training to understand.
Added in edit by Bev D
Donald J. Wheeler
Myths About Process Behavior Charts
Quality Digest
09/07/2011
www.qualitydigest.com
Myths About Process Behavior Charts
To begin to understand how a process behavior chart can be used with all sorts of data, we need to begin with a simple equation from page 275 of Shewhart’s 1931 book:Shewhart described two completely different approaches in this equation. The first of these approaches I call the statistical approach since it describes how we approach statistical inference:
1. Choose an appropriate probability model f(x) to use;
2. Choose some small risk of a false alarm ( 1 – P ) to use;
3. Find the exact critical values A and B for the selected model that correspond to this risk of a false alarm;
4. Then use these critical values in your analysis.
While this approach makes sense when working with functions of the data (i.e., statistics) for which we know the appropriate probability model, it encounters a huge problem when it is applied to the original data. As Shewhart pointed out, we will never have enough data to uniquely identify a specific probability model for the original data. In the mathematical sense all probability models are limiting functions for infinite sequences of random variables. This means that they can never be said to apply to any finite portion of that sequence. This is why any assumption of a probability model for the original data is just that—an assumption that cannot be verified in practice. (While lack-of-fit tests will sometimes allow us to falsify this assumption, they can never verify an assumed probability model.)
So what are we to do when we try to analyze data? Shewhart suggested a completely different approach to the equation above. He started by selecting some generic critical values A and B for which the risk of a false alarm, ( 1 – P ) will be reasonably small regardless of what probability model f(x) we might choose. This approach changed what is fixed and what is allowed to vary. With the statistical approach the risk of a false alarm is fixed, and the critical values vary to match the specific probability model. With Shewhart’s approach it is the critical values that are fixed (the three-sigma limits) and the risk of a false alarm that is allowed to vary. This complete reversal of the statistical approach is what makes Shewhart’s approach so hard for those with statistical training to understand.
Added in edit by Bev D
Donald J. Wheeler
Myths About Process Behavior Charts
Quality Digest
09/07/2011
Myths About Process Behavior Charts
Last edited by a moderator: